
Understanding the Influence of Adversaries in Distributed Systems

Holly P. Borowski and Jason R. Marden

Abstract— In a multi-agent system, transitioning from a
centralized to a distributed decision-making strategy can intro-
duce vulnerability to adversarial manipulation. We study the
potential for adversarial manipulation in a class of graphical
coordination games where the adversary can pose as a friendly
agent in the game, thereby directly influencing the decision-
making rules of a subset of agents. The adversary’s influence
can cascade throughout the system, indirectly influencing other
agents’ behavior and significantly impacting the emergent
collective behavior. The main results in this paper focus on
characterizing conditions by which the adversary’s local influ-
ence can dramatically impact the emergent global behavior, e.g.,
destabilize efficient equilibria.

I. INTRODUCTION

Engineering and social systems often consist of many
agents making decisions based on locally available informa-
tion. In an engineering system, a distributed decision making
strategy can be necessary when communication, computa-
tion, or sensing limitations preclude a centralized control
strategy. For example, a group of unmanned aircraft per-
forming surveillance in a hostile area may use a distributed
control strategy to limit communication and thus remain
undetected. Social systems are inherently distributed: indi-
viduals typically make decisions based on personal objectives
and the behavior of friends and acquaintances. For example,
the decision to adopt a recently released technology, such as
a new smartphone, may depend both on the quality of the
item itself and on friends’ choices.

While there are many advantages of distributed decision
making, it can create vulnerability to adversarial manipula-
tion. Adversaries may attempt to influence individual agents
by corrupting the information available to them, creating
a chain of events which could degrade the system’s per-
formance. Work in the area of cyber-physical systems has
focused on reducing the potential impact of adversarial inter-
ventions through detection mechanisms: detection of attacks
in power networks [8], estimation and control with corrupt
sensor data [1], [4], and monitoring [14]. In contrast to this
research, our work focuses on characterizing the impact an
adversary may have on distributed system dynamics when
no mitigation or detection measures are in place.

We use graphical coordination games, introduced in [3],
[17], to study the impact of adversarial manipulation. The
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foundation of a graphical coordination game is a simple two
agent coordination game, where each agent must choose be-
tween one of two alternatives, {x, y}, with payoffs depicted
by the following payoff matrix which we denote by u(·):

x y
x 1 + α, 1 + α 0, 0
y 0, 0 1, 1

2× 2 coordination game, g, with utilities u(ai, aj),
ai, aj ∈ {x, y}, and payoff gain α > 0

where α > 0 defines the relative quality of conventions (x, x)
over (y, y). Both agents prefer to agree on a convention, i.e.,
(x, x) or (y, y), than disagree, i.e., (x, y) or (y, x), with a
preference to agreeing on (x, x). The goal of deriving local
agent dynamics which lead to the efficient Nash equilibrium
(x, x) is challenging because of the existence of the ineffi-
cient Nash equilibrium (y, y). Deviating from (y, y) for an
individual agent is accompanied by an immediate payoff loss
of 1 to 0; hence, myopic agents may be reluctant to deviate,
stabilizing the inefficient equilibrium (y, y).

This two player coordination game can be extended to an
n-player graphical coordination game [9], [13], [19], where
the interactions between the agents N = {1, 2, . . . , n} is
described by an underlying graph G = (N,E) where E ⊆
N × N denotes the interdependence of agents’ objectives.
More formally, an agent’s total payoff is the sum of payoffs
it receives in the two player games played with its neighbors
Ni = {j ∈ N : (i, j) ∈ E}, i.e., for a joint decision a =
(a1, . . . , an) ∈ {x, y}n, the utility of agent i is

Ui(a1, . . . , an) =
∑
j∈Ni

u(ai, aj). (1)

Joint actions ~x := (x, x, . . . , x) and ~y := (y, y, . . . , y),
where either all players choose x or all players choose y,
are Nash equilibria of the game; other equilibria may emerge
depending on the structure of graph G. In any case, ~x is the
unique efficient equilibrium, since it maximizes agents’ total
payoffs. Graphical coordination games can model both task
allocation in engineering systems as well as the evolution of
social convention in marketing scenarios.

The goal in this setting is to prescribe a set of decision-
making rules that ensures emergent behavior is aligned
with the efficient Nash equilibrium ~x irrespective of the
underlying graph G and the choice of α. Any such rule
must be accompanied by a degree of noise (or mistakes)
as agents must be enticed to deviate from inefficient Nash
equilibrium. Log-linear learning [2], [15] is one distributed
decision making rule that selects the efficient equilibrium,
~x, in the graphical coordination game described above. Al-
though agents predominantly maximize their utilities under



log-linear learning, selection of the efficient equilibrium is
achieved by allowing agents to choose suboptimally with
some small probability that decreases exponentially with
respect to the associated payoff loss.

The equilibrium selection properties of log-linear learning
extend beyond coordination games to the class of potential
games [12], which often can be used to model engineering
systems where the efficient Nash equilibrium is aligned with
the optimal system behavior [10], [11], [18]. Hence, log-
linear learning can be a natural choice for prescribing control
laws in many distributed engineering systems [6], [7], [11],
[16], [21], as well as for analyzing the emergence of conven-
tions in social systems [15], [20]. This prompts the question:
can adversarial manipulation alter the emergent behavior of
log-linear learning in the context of graphical coordination
games (or more broadly in distributed engineering systems)?

We study this question in the context of the above
graphical coordination games. Here, we model the adversary
as additional nodes/edges in our graph, where the action
selected by these adversaries (which we fix as the inferior
convention y) impacts the utility of the neighboring agents
and thereby influences the agents’ decision-making rule as
specified by log-linear learning. We focus on three different
models of adversary behavior, referred to as fixed, intelligent;
mobile, random; and mobile, intelligent.
• A fixed intelligent adversary aims to influence a fixed set
S ⊆ N . To these agents the adversary appears to be a
neighbor who always selects alternative y. We assume that
S is selected based on the graph structure G and α.

• A mobile, random adversary connects to a random collec-
tion of agents S(t) ⊆ N at each time, t ∈ N using no
information on graph structure, G, or payoff gain, α.

• A mobile, intelligent agent connects to a collection of
agents, S(t) ⊆ N , at each time, t ∈ N using information
on graph structure, G, payoff gain α, and the current action
profile, a(t).

We will discuss each type of adversary’s influence on an
arbitrary graph, and then analyze the worst case influence
on a set of agents interacting according to a line. We specify
the values of payoff gain α for which an adversary can
stabilize joint action ~y, showing that a mobile, intelligent
agent can typically stabilize joint action ~y for larger values
of α than a mobile, random agent, and a mobile, random
agent can typically stabilize ~y for larger values of α than a
fixed, intelligent agent.

A. The model

Suppose agents in N interact according to the graphi-
cal coordination game above, with underlying graph G =
(N,E), alternatives {x, y} and payoff gain α. We denote
the joint action space by A = {x, y}n, and we write

(ai, a−i) = (a1, a2, . . . , ai, . . . , an) ∈ A

when considering agent i’s action separately from other
agents’ actions.

Now, suppose agents in N update their actions according
to the log-linear learning algorithm at times t = 0, 1, . . . ,
producing a sequence of joint actions a(0), a(1), . . .. We

assume agents begin with joint action, a(0) ∈ A, and let
a(t) = (ai, a−i) ∈ A. At time t ∈ N, an agent i ∈ N is
selected uniformly at random to update its action for time
t + 1; all other agents’ actions will remain fixed. Agent i
chooses its next action probabilistically according to:1

Pr[ai(t+ 1) = x | a−i(t) = a−i]

=
exp (β · Ui(x, a−i))

exp (β · Ui(x, a−i) + exp (β · Ui(y, a−i))
. (2)

Parameter β > 0 dictates an updating agent’s degree of
rationality. As β →∞, agent i is increasingly likely to select
a utility maximizing action, and as β → 0, agent i tends to
choose its next action uniformly at random. The joint action
at time t+ 1 is a(t+ 1) = (ai(t+ 1), a−i(t)).

Joint action, a ∈ A is strictly stochastically stable [5]
under log-linear learning dynamics if, for any ε > 0, there
exist B <∞ and T <∞ such that

Pr[a(t) = a] > 1− ε, for all β > B, t > T (3)

where a(t) is the joint action at time t ∈ N under log-linear
learning dynamics.

Joint action ~x is strictly stochastically stable under log-
linear learning dynamics over graphical coordination game
G [2]. We will investigate conditions when an adversary can
destabilize ~x and stabilize an alternate equilibrium.

Consider the situation where agents in N interact accord-
ing to the graphical game G, and an adversary seeks to
convert as many agents in N to play action y as possible.2 At
each time, t ∈ N the adversary attempts to influence a set of
agents S(t) ⊆ N by posing as a friendly agent who always
plays action y. Agents’ utilities, Ũ : A× 2N → R, are now
a function of adversarial and friendly behavior, defined by:

Ũi((ai, a−i), S) =


Ui(ai, a−i) if i /∈ S
Ui(ai, a−i) if ai = x

Ui(ai, a−i) + 1 if i ∈ S, ai = y
(4)

where (ai, a−i) ∈ A represents friendly agents’ joint action,
and S ⊆ N represents the set influenced by the adversary.
If i ∈ S(t), agent i receives an additional payoff of 1 for
coordinating with the adversary at action y at time t ∈ N; to
agents in S(t) the adversary appears to be a neighbor playing
action y. By posing as a player in the game, the adversary has
manipulated the utilities of agents belonging to S, providing
an extra incentive to choose the inferior alternative, y.

Suppose agents revise their actions according to log-linear
learning as in (2), where the utility, Ui defined in (1) is
replaced by Ũi in (4). An agent i ∈ N which revises its
action at time t ∈ N bases its new action choice on the utility
Ũi(a(t), S(t)) if i ∈ S(t), increasing the probability that
agent i updates its action to y. By posing as a player in the

1Agent i’s update probability is also conditioned on the fact that agent
i was selected to revise its action, which occurs with probability 1 / n.
For notational brevity we omit this throughout, and Pr[ai(t + 1) =
A | a−i(t) = a−i], for example, is understood to mean Pr[ai(t + 1) =
x | a−i(t) = a−i, i selected for update].

2In this paper we consider a single adversary which may influence
multiple agents. Our models can be extended to multiple adversaries whose
objectives are either aligned or conflicting.
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Fig. 1: Values of α for which each type of adversary can
stabilize joint action ~y in an n-agent line

coordination game, an adversary manipulates agents’ utility
functions.thereby modifying their decision making rules.

B. Summary of results

In the following sections, we will precisely define three
models of adversarial behavior: fixed, intelligent; mobile,
random; and mobile, intelligent. Each type of adversary has a
fixed capability, k, i.e., |S(t)| = k for all t ∈ N. Our analysis
of these models will provide insight into an adversary’s
influence on a general graph, G, and we derive exact bounds
on α for adversarial influence on a line. Values of α for which
each type of agent can stabilize ~y in the line are summarized
below and in Figure 1.

• A fixed, intelligent adversary with capability k can stabi-
lize joint action ~y when α < k /(n− 1) (Theorem 4).

• A mobile, random adversary with capability k ≤ n − 1
can stabilize joint action ~y when α < 1 (Theorem 5).

• A mobile, intelligent adversary with capability k = 1 can
stabilize joint action ~y when α < 1 (Theorem 6).

• A mobile, intelligent adversary with capability k ≥ 2 can
stabilize joint action ~y when α < n/(n−1) (Theorem 6).

Note that a mobile, random adversary’s influence is the same
for any capability k with 1 ≤ k ≤ n−1. Similarly, a mobile,
intelligent adversary does not increase its influence on agents
in a line by increasing its capability above k = 2.

II. UNIVERSAL RESILIENCE TO AN ADVERSARY

A graphical coordination game G is universally resilient
to an adversary if ~x is strictly stochastically stable for
all possible influenced sets S(t), t ∈ N and adversarial
capability, k ≤ n. The following theorem provides sufficient
conditions that ensure G is universally resilient. For sets
S, T ⊆ N , define

d(S, T ) := |{{i, j} ∈ E : i ∈ S, j ∈ T}|.

Theorem 1: Let G = (N,E), and suppose an adversary
influences some set S(t) with |S(t)| = k at each t ∈ N. If

α >
|T | − d(T,N \ T )

d(T,N)
, ∀T ⊆ N (5)

Then ~x is strictly stochastically stable. In particular, if
|S(t)| = N for all t ∈ N, (5) is also a necessary condition
for strict stochastic stability of ~x.

The proof of Theorem 1 follows by using a straightforward
adaptation of Proposition 2 in [19] to our adversarial model,
included in Appendix B

When α satisfies (5), an adversary cannot influence the
game for any S(t). If ~x is strictly stochastically stable when
the adversary influences set S(t) = N for all t ∈ N, then
~x will be strictly stochastically stable for any sequence of
influenced sets, S(t) ⊆ N. In this case, game G is resilient
in the presence of any adversary with capability k ≤ n.3

When (5) is satisfied for some T ⊆ N , this means that
agents in T have a sufficiently large proportion of neighbors
in N . In this case, T can only be influenced by an adversary
when the payoff gain, α, is small.

III. FIXED, INTELLIGENT ADVERSARIAL INFLUENCE

In the fixed, intelligent model of behavior, the adversary
knows graph structure, G, and the value of payoff gain, α.
Using this information it influences some fixed subset,

S(t) = S ⊆ N, |S| = k, ∀t ∈ N,

aiming to maximize the number of agents playing y in a
stochastically stable state. Agents in N update their actions
according to log-linear learning as in (2) with utilities

Ũi(a(t), S(t)) = Ũi(a(t), S), ∀t ∈ N.

We begin with two theorems which provide conditions for
stochastic stability in an arbitrary graph G influenced by an
adversary, and then we analyze stability conditions in detail
for the line.

Theorem 2: Suppose agents in N are influenced by a
fixed, intelligent adversary with capability k. Joint action ~x
is strictly stochastically stable for any influenced set S with
|S| = k if and only if

α >
|T ∩ S| − d(T,N \ T )

d(T,N)
, (6)

∀T ⊆ N, T 6= ∅ and ∀S ⊆ N with |S| = k.
Theorem 3 provides conditions which ensure an adversary

can stabilize joint action ~y.
Theorem 3: A fixed, intelligent adversary with capability

k can stabilize ~y by influencing set S ⊆ N with |S| = k if
and only if

α <
d(T,N \ T ) + k − |T ∩ S|

d(N \ T,N \ T )
(7)

for all T ⊆ N , T 6= N .
The proofs of Theorems 2 and 3 follow similarly to the

proof of Theorem 1 and are omitted for brevity.
The line: We now analyze a fixed, intelligent adversary’s in-
fluence on the line. Let G = (N,E) with N = {1, 2, . . . , n}

3Our results can naturally be extended to a multi-agent scenario. The
primary differences occur when multiple adversaries can influence a single
friendly agent (or, equivalently, when an adversary’s influence is weighted
by some factor greater than 1). In this scenario, multiple adversaries can
more easily overpower the influence of friendly agents on agent i. We will
address this in future work.



and E = {{i, j} : j = i+ 1}, i.e., G is a line with n nodes.
Define

[t] := {1, 2, . . . , t} ⊆ N, and [i, j] := {i, i+ 1, . . . , j} ⊆ N.

Theorem 4 summarizes stability conditions for the line
influenced by a fixed, intelligent adversary.

Theorem 4: Suppose G is influenced by a fixed, intelligent
adversary with capability k. Then:
(a) Joint action ~x is strictly stochastically stable under any

influenced set S ⊆ N with |S| = k if and only if

α > max
{
k − 1
k

,
k

n− 1

}
. (8)

(b) If α < k
n−1 and the adversary distributes influenced set

S as evenly as possible along the line, so that

|S ∩ [i, i+ t]| ≤
⌈
kt

n

⌉
for any set of nodes [i, i+ t] ⊆ N , with 1 ≤ i ≤ n− t,
t ≤ n then ~y is strictly stochastically stable.

(c) Joint action ~y is strictly stochastically stable for all
influenced sets S with |S| = k if and only if

α <
1 + k − t
n− t− 1

, ∀t = 1, . . . , k. (9)

(d) If k
n−1 < α < k−1

k , the adversary can influence at most

tmax = max
{
t : α <

min{t, k} − 1
t

}
agents to play ~y in the stochastically stable state by
distributing S as evenly as possible along [t], so that

|S ∩ [i, i+ `]| ≤
⌈
k`

t

⌉
and S ∩ [t+ 1, n] = ∅

for any set of nodes [i, i+ `] ⊂ N with 1 ≤ i ≤ t− `,
and ` < t.

The proof of Theorem 4 is in Appendix B.

IV. MOBILE, RANDOM ADVERSARIAL INFLUENCE

Now, consider an adversary which influences a randomly
chosen set S(t) ⊆ N at each t ∈ N. The adversary
chooses each influenced set, S(t), independently according
to a uniform distribution over Sk := {S ∈ 2N : |S| = k}
An updating agent i ∈ N revises according to (2), where
i ∈ S(t) with probability k / n.
The line: Suppose a mobile, random adversary attempts to
influence a set of agents arranged in a line. Theorem 4
addresses the scenario where k = n, since in this case
random and fixed agents are equivalent. Hence, Theorem 5
focuses on the case where 1 ≤ k ≤ n− 1.

Theorem 5: Suppose G = (N,E) is a line, and agents in
N update their actions according to log-linear learning in
the presence of a random, mobile adversary with capability
k, where 1 ≤ k ≤ n − 1. Then joint action ~x is strictly
stochastically stable if and only if α > 1, and joint action ~y
is strictly stochastically stable if and only if α < 1.

Theorem 5 is proved in Appendix D.

Note that a mobile, random adversary with capability k =
1 stabilizes ~y for the same values of α as a mobile, random
adversary with any capability k ≤ n−1. Recall that a fixed,
intelligent adversary with capability k could only stabilize
~y when α < k /(n − 1). In this sense, a mobile, random
adversary with capability k = 1 has wider influence than a
fixed, intelligent adversary with capability k ≤ n− 2.

V. MOBILE, INTELLIGENT ADVERSARIAL INFLUENCE

Now suppose the adversary chooses S(t) at each t ∈ N
based on joint action, a(t). We assume a mobile, intelligent
adversary with capability k chooses S(t) according to a pol-
icy µ : A → Sk that maximizes the number of agents playing
y in a stochastically stable state, given graph structure, G,
and payoff gain α. Again, agents in N update their actions
according to log-linear learning as in (2), with agent i’s utility
at time t ∈ N given by Ũi(a(t), µ(a(t)). We denote the set
of optimal adversarial policies for a given capability k by

Mk = arg max
µ∈Mk

max
a stable under µ

|{i ∈ N : ai = y}| (10)

where Mk represents the set of all mappings µ : A → Sk,
and “a stable under µ” denotes that joint action a ∈ A is
strictly stochastically stable under µ. 4

The line: Theorem 6 establishes conditions for strict stochas-
tic stability of joint actions ~x and ~y in the line influenced by
a mobile, intelligent adversary.

Theorem 6: Suppose G = (N,E) is a line, and agents
in N update their actions according to log-linear learning.
Further suppose a mobile intelligent adversary influences set
S(t) at each t ∈ N according to an optimal policy for the
line, µ? ∈Mk.
(a) If the adversary has capability k = 1 then ~x is strictly

stochastically stable if and only if α > 1, and ~y is strictly
stochastically stable if and only if α < 1.
In particular, when k = 1, the policy µ? : A → S1 with:

µ?(a) =


{1} if a = ~x

{t+ 1} if a = (~y[t], ~x[t+1,n]),
t ∈ {1, 2, . . . , n− 1}

{1} otherwise

(11)

is optimal, i.e., µ? ∈M1

(b) If 2 ≤ k ≤ n, then ~x is strictly stochastically stable if and
only if α > n/(n− 1), and ~y is strictly stochastically
stable if and only if α < n/(n− 1).
If 2 ≤ k ≤ n− 1, any policy µ? : A → Sk satisfying:
(1) 1 ∈ µ?(~x)
(2) 1, n ∈ µ?(~y)
(3) For any a ∈ A, a 6= ~x, ~y, there exists i ∈ µ?(a) such

that ai = x and either ai−1 = y or ai+1 = y

is optimal.
The proof of Theorem 6 is included in Appendix E.

Recall that a mobile, random agent with k ≥ 1 and a
fixed, intelligent agent with k = n − 1 can stabilize ~y any
time α < 1; an adversary who can intelligently influence a

4Note that the optimal set of policies, Mk , depends highly on the
structure of graph G, as does the stationary distribution πµ. In order to
maintain notational simplicity, we do not explicitly write this dependence.



different single agent in N each day can stabilize ~y under
these same conditions. If the intelligent, mobile adversary has
capability k ≥ 2, it can stabilize ~y when α < n/(n− 1), i.e.,
under the same conditions as an adversary with capability
k = n.

VI. SUMMARY AND FUTURE WORK

We have shown that a mobile, intelligent adversary with
capability k ≥ 2 can stabilize joint action ~y in a line for
any α < n/(n− 1). Next, an intelligent, mobile adversary
with capability k = 1 and a random, mobile adversary
with capability k ≤ n − 1 can stabilize ~y when α < 1.
Finally, a fixed, intelligent adversary with capability k can
stabilize ~y when α < k /(n − 1). Recall that a fixed,
intelligent adversary can also stabilize a joint action where
some subset of agents play action y; this only occurs when
α < (min{t, k} − 1) / t < 1 for some t ≤ n.

In future work, we will address the scenario where mul-
tiple adversaries aim to influence agents in N .By heavily
influencing a single agent, adversaries can cause this agent
to choose action y with near certainty. Due to cascading
effects, this can allow adversaries to stabilize joint action ~y
for significantly larger values of payoff gain, α.
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APPENDIX

A. Log-linear learning and its underlying Markov process

Log-linear learning dynamics define a family of aperiodic,
irreducible Markov processes, {P̃β}β>0, over state space
A×Sk with transition probabilities parameterized by β [2].
Under our adversarial model, transition probabilities are

Pβ(((ai, a−i), S)→ (a′i, a−i), S
′)

=
1
n

Pr[ai(t+ 1) = a′i | a−i(t) = a−i, S(t) = S] (12)

for any i ∈ N, ai ∈ {~x, ~y}, (ai, a−i) ∈ A and S, S′ ∈ Sk.
Here S transitions to S′ according to the specified adversarial
model. If a and a′ ∈ A differ by more than one agent’s
action, then Pβ(a→ a′) = 0.

For each model of adversarial behavior, it is straightfor-
ward to reduce P̃β to a Markov chain, Pβ over state space
A. Since Pβ is aperiodic and irreducible for any β > 0, it
has a unique stationary distribution, πβ , with πβPβ = πβ .

As β → ∞, the stationary distribution, πβ , associated
with log-linear learning converges to a unique distribution,
π := limβ→∞ πβ . If π(a) = 1, then joint action a is strictly
stochastically stable [5].5

As β → ∞, transition probabilities Pβ(a → a′) of
log-linear learning converge to the transition probabilities,
P (a → a′), of a best response process. Distribution π is
one of possibly multiple stationary distributions of a best
response process over game G.

B. Stability in the presence of a fixed, intelligent adversary

When a fixed, intelligent adversary influences set S, the
corresponding influenced graphical coordination game is a
potential game [12] with potential function

ΦS(ai, a−i) =
1
2

∑
i∈N

(Ui(ai, a−i) + 2 · 1i∈S,ai=y) . (13)

This implies that the stationary distribution associated with
log-linear learning influenced by a fixed adversary is

π(a) =
exp(β · ΦS(a))∑

a′∈A exp(β · ΦS(a′))
, (14)

for a ∈ A [2]. Hence, a ∈ A is strictly stochastically stable
if and only if ΦS(a) > ΦS(a′) for all a′ ∈ A, a′ 6= a.

5Note that this definition of strict stochastic stability is equivalent to the
definition in the introduction.



Proof of Theorem 1: This proof adapts Proposition 2 in [19]
to our adversarial model. Let G = (N,E) and suppose
S(t) = N for all t ∈ N. Define (~yT , ~xN\T ) to be the
joint action (a1, . . . , an) with T = {i : ai = y}. It is
straightforward to show that

α >
|T | − d(T,N \ T )

d(T,N)
, ∀T ⊆ N

if and only if

ΦN (~x) = (1 + α)d(N,N)
> (1 + α)d(N \ T,N \ T ) + d(T, T ) + |T |
= ΦN (~yT , ~xN\T ) (15)

for all T ⊆ N , R 6= ∅, implying the desired result.
Proof of Theorem 4 part (a): Let G = (N,E) be a line graph
influenced by an adversary with capability k. Joint action ~x
is strictly stochastically stable for all S ⊆ N with |S| = k
if and only if

ΦS(~x) > ΦS(~yT , ~xN\T )
⇐⇒

(1 + α)d(N,N)
>

(1 + α)d(N \ T,N\T ) + d(T, T ) + |S ∩ T |. (16)

for all S ⊆ N with |S| = k and all T ⊆ N , T 6= ∅.
Define t := |T |, let p denote the number of components

in the graph G restricted to T , and let ` denote the number
of components in the graph restricted to N \T . Since T 6= ∅,
we have p ≥ 1 and ` ∈ {p− 1, p, p+ 1}.

The case where T = N implies

ΦS(~x) = (1 + α)(n− 1) > n− 1 + k = ΦS(~y),

which holds if and only if α > k /(n− 1).
If T ⊂ N , the graph restricted to N \ T has at least one

component, i.e., ` ≥ 1. Then,

ΦS(~yT , ~xN\T ) = (1 + α)(n− t− `) + t− p+ |S ∩ T |
≤ (1 + α)(n− t− 1) + t− 1 + min{k, t}

where the inequality is an equality when T = [t] and S = [k].
Then,

ΦS(~yT , ~xN\T ) ≤ (1 + α)(n− t− 1) + t− 1 + min{k, t}
< (1 + α)(n− 1)

= ΦS(~x)

for all T ⊂ N if and only if α > (k − 1) / k, as desired.
Proof of Theorem 4 part (b): Suppose α < k /(n− 1). Then

ΦS(~y) = n− 1 + k > (1 + α)(n− 1) = ΦS(~x)

for any S ⊆ N with |S| = k. Then, to show that ~y is
stochastically stable for influenced set S satisfying

|S ∩ [i, i+ t]| ≤
⌈
kt

n

⌉
,

it remains to show that ΦS(~y) > ΦS(~yT , ~xN\T ) for any
T ⊂ N with T 6= ∅ and T 6= N. Suppose the graph

restricted to set T has p components, where p ≥ 1. Label
these components as T1, T2, . . . , Tp and define t := |T | and
ti := |Ti| Let ` represent the number of components in the
graph restricted to N \T. Since G is the line graph, we have
` ∈ {p− 1, p, p+ 1}, and since T 6= N , ` ≥ 1.

For any T ⊂ N with T 6= N,T 6= ∅, and 0 < t < n,

ΦS(~yT , ~xN\T )

= (1 + α)(n− t− `) +
p∑
j=1

(tj − 1 + |S ∩ Tj |)

< n− 1 + k (17)

= ΦS(~y)

where (17) is straightforward to verify. The proofs
of parts (c) and (d) follow in a similar manner to parts (a)
and (b), by using the potential function ΦS for stochastic
stability analysis.

C. Resistance trees for stochastic stability analysis

When graphical coordination game G is influenced by a
mobile adversary, it is no longer a potential game; resistance
tree tools defined in this section enable us to determine
stochastically stable states.

The Markov process, Pβ , defined by log-linear learning
dynamics over a normal form game is a regular perturbation
of a best response process. In particular, log-linear learning
is a regular perturbation of the best response process defined
in Appendix A, where the size of the perturbation is param-
eterized by ε = e−β . The following definitions and analysis
techniques are taken from [20].

Definition 1 ( [20]): A Markov process with transition
matrix Mε defined over state space Ω and parameterized
by perturbation ε ∈ (0, a] for some a > 0 is a regular
perturbation of the process M0 if it satisfies:
1) Mε is aperiodic and irreducible for all ε ∈ (0, a].
2) limε→0+ Mε(x, y)→M(x, y) for all x, y ∈ Ω.
3) If Mε(x, y) > 0 for some ε ∈ (0, a] then there exists

r(x, y) such that

0 < lim
ε→0+

Mε(x, y)
εr(x,y)

<∞, (18)

where r(x, y) is referred to as the resistance of transition
x→ y.

Let Markov process Mε be a regular perturbation of
process M0 over state space Ω, where perturbations are
parameterized by ε ∈ (0, a] for some a > 0. Define graph
G = (Ω, E) to be the directed graph with (x, y) ∈ E ⇐⇒
Mε(x, y) > 0 for some ε ∈ (0, a]. Edge (x, y) ∈ E is
weighted by the resistance r(x, y) defined in (18).

Now let Ω1,Ω2, . . . ,Ωn denote the recurrent classes of
process M0. In graph G, these classes satisfy:
1) For all x ∈ Ω, there is a zero resistance path from x to

Ωi for some i ∈ {1, 2, . . . , n}.
2) For all i ∈ {1, 2, . . . , n} and all x, y ∈ Ωi there exists a

zero resistance path from x to y and from y to x.
3) For all x, y with x ∈ Ωi for some i ∈ {1, 2, . . . , n}, and

y /∈ Ωi, r(x, y) > 0.



Define a second directed graph, G = (V, E), where V =
{1, 2, . . . , n} are the indices of the n recurrent classes in
Ω. For this graph, (i, j) ∈ E for all i, j ∈ {1, 2, . . . , n},
i 6= j. Edge (i, j) is weighted by the resistance of the lowest
resistance path starting in Ωi and ending in Ωj , i.e.,

R(i, j) := min
i∈Ωi,j∈Ωj

min
p∈P(i→j)

r(p), (19)

where P(i → j) denotes the set of all simple paths in G
beginning at i and ending at j. For path p = (e1, e2, . . . , ek),

r(p) :=
k∑
`=1

r(e`). (20)

Let Ti be the set of all trees in G rooted at i, and define

γi := min
t∈Ti

R(t) (21)

to be the stochastic potential of Ωi, where the resistance of
tree t is the sum of the resistances (in G) of its edges,

R(t) :=
∑
e∈t

R(e). (22)

We use the following theorem due to [20] in our analysis:

Theorem 7 ( [20]): State x ∈ Ω is stochastically stable if
and only if x ∈ Ωi where

γi = min
j∈{1,2,...,n}

γj , (23)

i.e., x belongs to a recurrent class which minimizes the
stochastic potential. Furthermore, x is strictly stochastically
stable if and only if Ωi = {x} and γi < γj , ∀j 6= i.

D. Stability in the presence of a mobile, random adversary

The following lemma applies to any graphical coordination
game in the presence of a mobile, random adversary with
capability k ≤ n−1. It states that a mobile random adversary
decreases the resistance of transitions when an agent in N
changes its action from x to y, but does not change the
resistance of transitions in the opposite direction.

Lemma 1: Suppose agents in N update their actions ac-
cording to log-linear learning in the presence of a mobile,
random adversary with capability k, where 1 ≤ k ≤ n − 1.
Then the resistance of a transition where agent i ∈ N
changes its action from x to y is:

r((x, a−i)→ (y, a−i))
= max {Ui(x, a−i)− Ui(y, a−i)− 1, 0} (24)

and the resistance of a transition where agent i ∈ N changes
its action from y to x is:

r((y, a−i)→ (x, a−i))
= max {Ui(y, a−i)− Ui(x, a−i), 0} . (25)

Here Ui : A → R, defined in (1), is the utility function for
agent i in the uninfluenced game, G.

Proof: In the presence of a mobile, random agent,

Pβ ((x, a−i)→ (y, a−i))

=
1
n

(
k

n
· exp(β(Ui(y, a−i) + 1))

exp(β(Ui(y, a−i) + 1)) + exp(βUi(x, a−i))

+
n− k
n
· exp(βUi(y, a−i))

exp(βUi(y, a−i)) + exp(βUi(x, a−i))

)
Define Pε ((x, a−i)→ (y, a−i)) by substituting ε = e−β into
the above equation. It is straightforward to see that

0 < lim
ε→0+

Pε ((x, a−i)→ (y, a−i))
εUi(x,a−i)−Ui(y,a−i)−1

<∞,

implying

r((x, a−i)→ (y, a−i))
= max {Ui(x, a−i)− Ui(y, a−i)− 1, 0} .

Equation (25) may be similarly verified.
Proof of Theorem 5: First we show that, for any α > 0, ~x
and ~y are the only two recurrent classes of the unperturbed
process, P , for the line. Then we show that, for the perturbed
process, R(~x, ~y) < R(~y, ~x) ⇐⇒ α > 1 and R(~y, ~x) <
R(~x, ~y) ⇐⇒ α < 1. That is, when α > 1 and β is large,
the lowest resistance path from ~x to ~y occurs with higher
probability than the lowest resistance path from ~y to ~x in Pβ ,
and vice versa when α < 1. Combining this with Theorem 7
proves Theorem 5.
Recurrent classes of P for the line: Note that, P (~x, a) = 0
for all a ∈ A, a 6= ~x, and P (~y, a) = 0 for all a ∈ A, a 6= ~y,
implying ~x and ~y are recurrent. To show that no other state
is recurrent, we will show that, for any a ∈ A\{~x, ~y}, there
is a sequence of positive probability transitions in P leading
from a to ~x.

Let a ∈ A with a 6= ~x, ~y. Without loss of generality,
choose i, i + 1 such that ai = y and ai+1 = x. Denote
(ai, a−i) = a, and note that:

P ((y, a−i)→ (x, a−i)) =
1
n
· n− k

n
> 0 (26)

for any k ≤ n− 1 and α > 0. Since (26) holds for any a 6=
~x, ~y, we can construct a sequence of at most n− 1 positive
probability transitions leading to joint action ~x. Therefore a
cannot be recurrent in P.
Resistance between recurrent classes ~x and ~y: We will show
that for all 1 ≤ k ≤ n− 1,

R(~y, ~x) = 1, ∀α > 0, (27)
R(~x, ~y) ≥ α, ∀α > 0, (28)

and R(~x, ~y) = α, ∀α ≤ 1. (29)

For (27), we have r(~y, (x, y, . . . , y)) = 1, and r(~y, a) ≥ 1
for any a 6= ~y, implying that R(~y, ~x) ≥ 1. Then, since

r
(
(~x[t], ~y[t+1,n]), (~x[t+1], ~y[t+2,n])

)
= 0,

for any 1 ≤ t ≤ n− 1, and

r
(
(~x[n−1], ~y[n,n]), ~x

)
= 0,

the path ~y → (x, y, . . . , y) → (x, x, y, . . . , y) → · · · → ~y
has resistance 1. Since we know R(~y, ~x) ≥ 1, this implies



that R(~y, ~x) = 1.
Now, for (28), since r(~x, a) ≥ α for any a 6= ~x, this

implies R(~x, ~y) ≥ α. In particular r(~x → (y, x, . . . , x)) =
α. When α < 1,

r
(
(~y[t], ~x[t+1,n]), (~y[t+1], ~x[t+2,n])

)
= 0

for any 1 ≤ t ≤ n− 1, and

r
(
(~y[n−1], ~x[n,n]), ~y

)
= 0,

implying that the path ~x→ (y, x, . . . , x)→ (y, y, . . . , x)→
· · · → ~y has resistance α when α ≤ 1. Hence R(~x, ~y) = α.

Combining (27) - (29) with Theorem 7 establishes Theo-
rem 5.

E. Stability in the presence of an intelligent, mobile agent
Define Pµβ to be the Markov process associated with

log-linear learning in the presence of a mobile, intelligent
adversary using policy µ.
Proof of Theorem 6 part (a): Let G = (N,E) be the line,
influenced by a mobile, intelligent adversary with capability
k = 1. For any policy µ : A → S = N , if α 6= 1, only
~x and ~y are recurrent in the unperturbed process, Pµ. This
can be shown via an argument similar to the one used in the
proof of Theorem 5.

Define µ? as in (11). We will show that, (1) in Pµ
?

β ,
~x is stochastically stable if and only if α > 1, and ~y is
stochastically stable if and only if α < 1, and (2) µ? is
optimal, i.e., if α = 1, ~x is stochastically stable for any
µ ∈ M1, and if α > 1, ~x is strictly stochastically stable for
any µ ∈M1.

For policy µ ∈ M1, let rµ(a, a′) denote the single
transition resistance from a to a′ ∈ A in Pµβ , and let
Rµ(a, a′), denote the resistance of the lowest resistance path
from a to a′ ∈ A.

For any µ ∈M1, we have rµ(~x, a) ≥ α, ∀a ∈ A, a 6= ~x,
and rµ(~y, a) ≥ 1, ∀a ∈ A, a 6= ~y. Therefore

Rµ(~x→ ~y) ≥ α, and Rµ(~y, ~x) ≥ 1. (30)

If α < 1, the path ~x→ (y, x, . . . , x)→ (y, y, x, . . . , x)→
· · · → ~y in Pµ

?

β has total resistance α. Equation (30) implies
that Rµ

?

(~x, ~y) = α < 1 ≤ Rµ
?

(~y, ~x), so by Theorem 7, ~y
is strictly stochastically stable in Pµ

?

.
If α = 1, it is straightforward to show that both ~x and ~y

are stochastically stable in Pµ
?

β . Moreover, for any µ ∈M,
either the resistance of path

~y → (x, y, . . . , y)→ (x, x, y, . . . y)→ · · · → ~x

or the resistance of path

~y → (y, . . . , y, x)→ (y . . . , y, x, x)→ · · · → ~x

is 1, and hence it is impossible to find a policy with
Rµ(~x, ~y) < Rµ(~y, ~x).

If α > 1, similar arguments show that Rµ(~y, ~x) = 1 for
any µ ∈ Mk. Combining this with (30) implies that ~x is
stochastically stable for any Pµβ , µ ∈M.
Proof of (b): Again let G = (N,E) be the line, and suppose
the adversary has capability k with 2 ≤ k ≤ n− 1. We will
show that, for a policy µ? which satisfies Conditions 1 - 3 of

Theorem 6, ~x is strictly stochastically stable in Pµ
?

if and
only if α > n

n−1 , and ~y is strictly stochastically stable if and
only if α < n

n−1 . Since this is the same bound on α when
we have an adversary with capability n, from Theorem 4
part (a), this also proves that policy µ? is optimal, i.e., no
other policy can stabilize a state a ∈ A with ai = ~y for some
i ∈ N when α > n

n−1 .

First note that only ~y is recurrent in Pµ
?

when α ≤ 1,
and hence ~y is strictly stochastically stable in Pµ

?

β .
Now assume α > 1. Again, it is straightforward to verify

that only ~x and ~y are recurrent in Pµ
?

. Note that r(~x →
a) ≥ α,∀a 6= ~x, and r(~y → a) = 2,∀a 6= ~y. Moreover, the
path ~x → (y, x, . . . , x) → (y, y, x, . . . , x) → · · · → ~y has
total resistance α+ (n− 2)(α− 1) in Pµ

?

β .
It is straightforward to verify that this is the least resistance

path from ~x to ~y in Pµ
?

β , implying R(~x, ~y) = α+(n−2)(α−
1). The path ~y → (x, y, . . . , y) → (x, x, y, . . . , y) → · · · →
~x has resistance 2; hence R(~y → ~x) = 2.


