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Abstract— The majority of distributed learning literature fo-
cuses on convergence to Nash equilibria. Correlated equilibria,
on the other hand, can often characterize more efficient collec-
tive behavior than even the best Nash equilibrium. However,
there are no existing distributed learning algorithms that con-
verge to specific correlated equilibria. In this paper, we provide
one such algorithm which guarantees that the agents’ collective
joint strategy will constitute an efficient correlated equilibrium
with high probability. The key to attaining efficient correlated
behavior through distributed learning involves incorporating a
common random signal into the learning environment.

I. INTRODUCTION

Agents’ control laws are a crucial component of any mul-
tiagent system. They dictate how individual agents process
locally available information to make a decision. Factors
that determine the quality of a learning algorithm include
informational dependencies, asymptotic guarantees, and con-
vergence rates. Hence, significant research has been directed
at deriving distributed learning algorithms that perform well
with regard to these performance metrics.

The majority of this research has focused on attain-
ing convergence to (pure) Nash equilibria under stringent
information conditions [4], [8]–[10], [21], [24]. Recently,
the research focus has shifted to ensuring convergence to
alternate types of equilibria that often yield more efficient
behavior than Nash equilibria. In particular, results have
emerged that guarantee convergence to Pareto efficient Nash
equilibria [17], [22], potential function maximizers [3], [15],
welfare maximizing action profiles [1], [18], and correlated
equilibrium [2], [7], [11], [16], among others.

In most cases highlighted above, the derived algorithms
guarantee (probabilistic) convergence to the specified equi-
libria. However, the class of correlated equilibria has posed
significant challenges with regards to this goal. Learning al-
gorithms that converge to an efficient correlated equilibrium
are desirable because optimal system behavior can often be
characterized by a correlated equilibrium. Unfortunately, the
aforementioned learning algorithms, such as regret matching
[11], merely converge to the set of correlated equilibria.
This means that the long run behavior does not necessarily
constitute – or even approximate – a specific correlated
equilibrium at any instance of time.
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Here, we provide a simple distributed learning algorithm
that converges to the most efficient, i.e., welfare maximizing,
correlated equilibrium. For concreteness, consider a mild
variant of the Shapley game with the following payoff matrix

L M R
T 1,-ε -ε,1 0,0
M 0,0 1,-ε -ε,1
B -ε,1 0,0 1,-ε

where ε > 0 is a small constant. In this game, there are two
players (Row, Column); the row player has three actions
(T,M,B), and the column player has three actions (L,M,R).
The numbers in the table above are the players’ payoffs for
each of the nine joint actions. The unique Nash equilibrium
for this game occurs when each player uses a probabilistic
strategy that selects each of the three actions with probability
1/3. This yields an expected payoff of ≈ 1/3 to each player.
Alternatively, a joint distribution that places a mass of 1/6
on each of the six joint actions that yield non-zero payoffs
to the players yields an expected payoff of ≈ 1/2 to each
player. Note that this distribution cannot be realized by
independent strategies associated with the two players, but
instead represents a specific correlated equilibrium.

As the above example demonstrates, distributed learning
algorithms that converge to efficient correlated equilibria can
be desirable from a system-wide perspective. In line with
this theme, a recent result in [16] proposed a distributed
algorithm that guarantees that the empirical frequency of
the agents’ collective behavior will converge to an efficient
correlated equilibrium; however, convergence in empirical
frequencies is attained through deterministic cyclic behavior.
Additional results presented in [14] rely upon looking for
cyclic behavior against a bounded memory opponent.

Predictable, cyclic behavior may be desirable from a
system-wide perspective for many applications, e.g., data
ferrying [5]. However, such behavior could be exploited
in many other situations, e.g., team versus team zero-sum
games [12], [23]. By viewing each team as a single player,
classical results for two-player zero-sum games suggest that
a team’s desired strategy is to play its security strategy,
which can be characterized by a probability distribution
over the team’s joint action space. Distributed learning
algorithms that can stabilize specific joint strategies, such as
correlated equilibria, may be necessary for providing strong
performance guarantees in such settings.

Here, we present a distributed learning algorithm that
ensures agents play a joint strategy corresponding to the
efficient correlated equilibrium. Attaining such guarantees
on the underlying joint strategy is non-trivial as we aim to
design learning rules where individual agents make inde-
pendent decisions in response to local information. Incorpo-
rating a common random signal into agents’ local decision
making rules makes this correlation possible.



Recent research has also focused on efficient central-
ized algorithms for computing specific correlated equilibria
[13], [19], [20]. Such algorithms often require a complete
characterization of the game which is unavailable in many
engineering multiagent systems. Hence, the applicability of
such results to design and control of multiagent systems may
be limited.

II. BACKGROUND

We consider the framework of finite strategic form games
where there exists an agent set N = {1, 2, . . . , n}, and each
agent i ∈ N is associated with a finite action set Ai and
a utility function Ui : A → [0, 1] where A = A1 × A2 ×
· · · × An denotes the joint action space. We represent such
a game by the tuple G = (N, {Ui}i∈N , {Ai}i∈N ).

We focus on the class of coarse correlated equilibria [2].
A coarse correlated equilibrium is a joint distribution q =
{qa}a∈A ∈ ∆(A), where ∆(A) represents the simplex over
the finite set A, such that for any i ∈ N and a′i ∈ Ai,∑

a∈A
Ui(ai, a−i)qa ≥

∑
a∈A

Ui(a′i, a−i)q
a, (1)

where a−i = {a1, . . . , ai−1, ai+1, . . . , an} denotes the ac-
tions of all players other than player i.1 We say a coarse
correlated equilibrium q∗ is efficient if it maximizes the sum
of the expected payoffs of the agents, i.e.,

q∗ ∈ arg max
q∈CCE

∑
i∈N

∑
a∈A

Ui(a)qa, (2)

where CCE ⊂ ∆(A) denotes the set of coarse correlated
equilibria. It is well known that CCE 6= ∅ for any game G.

We derive a distributed learning algorithm that ensures
collective behavior of agents converges to an efficient coarse
correlated equilibrium. We adopt the framework of repeated
one-shot games, where a static game G is repeated over
time and agents make decisions based on observations of
previous plays of the game. A repeated one-shot game yields
a sequence of action profiles a(0), a(1), . . . , where at each
time t ∈ {0, 1, 2, . . . } the decision of each agent i is chosen
independently according to the agent’s strategy at time t,
denoted by pi(t) = {pai

i (t)}ai∈Ai
∈ ∆(Ai).

A learning rule dictates how each agent selects its strategy
given available information from previous plays of the game.
One type of learning rule, known as completely uncoupled
or payoff based [8], takes on the form:

pi(t) = Fi

(
{ai(τ), Ui(a(τ))}τ=0,...,t−1

)
(3)

Such learning rules are known as completely uncoupled [8]
and represent one of the most informationally restrictive
classes of learning rules since the only knowledge that each
agent has about previous plays of the game is (i) the action
the agent played and (ii) the utility the agent received.

We measure a learning rule’s performance {Fi}i∈N by
its asymptotic guarantees. Let q(t) ∈ ∆(A) represent the
agents’ collective strategy at time t, which is of the form

q(a1,...,an)(t) = pa1
1 (t)× · · · × pan

n (t) (4)

1We will express an action profile a ∈ A as a = (ai, a−i).

where {pi(t)}i∈N are the individual agent strategies at time
t. We derive learning rules that guarantee agents’ collective
strategy is an efficient coarse correlated equilibrium the
majority of the time, i.e., for all sufficiently large times t,

Pr

[
q(t) ∈ arg max

q∈CCE

∑
i∈N

∑
a∈A

Ui(a)qa
]
≈ 1. (5)

Attaining this goal using learning rules of the form (3)
is impossible as such rules do not allow for correlation
between the players, i.e., the agents’ collective strategies
are restricted to being of form (4). Accordingly, we modify
the learning rules in (3) by giving each agent access to a
common random signal z(t) at each period t ∈ {0, 1, . . . }
that is i.i.d. and drawn uniformly from the interval [0, 1].
Now, the considered distributed learning rule takes the form

pi(t) = Fi

(
{ai(0), Ui(a(τ), z(τ))}τ=0,...,t−1

)
. (6)

This common signal can be used as a coordinating entity to
reach collective strategies beyond the form in (4).

III. A LEARNING ALGORITHM FOR ATTAINING EFFICIENT
CORRELATED EQUILIBRIA

In this section, we present a learning rule of the form
(6) that guarantees agents’ collective strategy constitutes
an efficient coarse correlated equilibrium the majority of
the time. This algorithm achieves the desired convergence
guarantees by using signal-based strategies to exploit the
common random signal, z(t).

A. Preliminaries

Consider a situation where each agent i ∈ N commits to
a signal-based strategy of the form si : [0, 1] → Ai which
associates with each signal z ∈ [0, 1] an action si(z) ∈ Ai.
With an abuse of notation, we consider a finite parameter-
ization of such signal-based strategies, which we refer to
as strategies, of the form Si = ∪Ω

ω=1(Ai)ω where Ω ≥ 1
is a design parameter identifying the granularization of the
agent’s possible strategies. A strategy si = (a1

i , . . . , a
ω
i ) ∈

Si, ω ≤ Ω, defines a mapping of the form

si(z) =


a1
i if z ∈ [0, 1/ω)
a2
i if z ∈ [1/ω, 2/ω)
...

...
aωi if z ∈ [(ω − 1)/ω, 1].

(7)

These strategies divide the unit interval into at most Ω
regions of equal length and associate each region with a
specific action in the agent’s action set. If the agents commit
to a strategy profile s = (s1, s2, . . . , sn) ∈ S =

∏
i∈N Si,

the resulting joint strategy q(s) = {qa(s)}a∈A ∈ ∆(A)
satisfies

qa(s) =
∫ 1

0

∏
i∈N

I{si(z) = ai}dz

where I{·} is the indicator function. Lastly, the set of joint
distributions that can be realized by the strategies S is

q(S) = {q ∈ ∆(A) : q(s) = q for some s ∈ S}.



B. Algorithm description

The forthcoming algorithm is reminiscent of the trial
and error learning algorithm introduced in [24] and can be
viewed at a high level through the following diagram.

Evaluation Trial Acceptance

period k

times
{p̄k + 1, . . . , p̄(k + 1)}

times times
{p̄(k + 1) + 1, . . . , p̄(k + 2)} {p̄(k + 2) + 1, . . . , p̄(k + 3)}

period 
k-1

period 
k+1

We begin by defining a constant c > n, an experi-
mentation rate ε ∈ (0, 1), and the length of a phase to
be p̄ = d1/εnc+1e time steps. A period consists of the
evaluation, trial, and acceptance phases, and hence is 3p̄
time steps long. Let xi = xi(k) = [sbi ,mi] represent that
state of each agent i ∈ N at the beginning of some period
k ∈ {1, 2, . . . }.
Agent Dynamics: Here we describe how individual agents
make decisions within a given period. Decisions of an agent
i ∈ N are influenced purely by its state at the beginning
of the k-th period, xi(k), and by payoffs received during
the k-th period. We specify agents’ behavior during the k-th
period for the three phases highlighted above.

– Evaluation Phase: The evaluation phase consists of the
times t ∈ {p̄3k+ 1, . . . , p̄(3k+ 1)}. Throughout this phase,
each agent commits to its baseline strategy sbi . At the end of
the phase, each agent computes its average baseline utility,

ubi =
1
p̄

p̄(3k+1)∑
τ=p̄3k+1

Ui
(
sb1(z(τ), . . . , sbn(z(τ))

)
, (8)

where z(τ) denotes the common random signal observed
at time τ . Here, ubi is viewed as an assessment of the
performance associated with the baseline strategy sbi .

– Trial Phase: After the evaluation phase comes the trial
phase which consists of the times t ∈ {p̄(3k + 1) +
1, . . . , p̄(3k+ 2)}. During the trial phase each player i ∈ N
may try a strategy other than its baseline, and must commit
to this trial strategy, sti ∈ Si, over the entire phase. Agents’
trial strategies are selected according to the following rule:

• Content, mi = C: When agent i is content, its trial
strategy, sti ∈ Si, is chosen according to the distribution

Pr
[
sti = si

]
=
{

1− εc if si = sbi
εc / |Ai| for any si = ai ∈ Ai (9)

Note that a content player predominantly selects its base-
line strategy during the trial phase.

• Discontent, mi = D: When agent i is discontent, its trial
strategy, sti, is chosen randomly from the set Si,

Pr
[
sti = si

]
= 1 / |Si| for all si ∈ Si. (10)

At the end of the trial phase, each agent computes its
average utility:

uti =
1
p̄

p̄(3k+2)∑
τ=p̄3(k+1)+1

Ui
(
st1(z(τ), . . . , stn(z(τ))

)
. (11)

Here, uti is viewed as an assessment of the performance
associated with the baseline strategy sti.
– Acceptance Phase: The last phase is the acceptance phase
which consists of times t ∈ {p̄(3k+ 2) + 1, . . . , p̄(3k+ 3)}.
The primary purpose of the acceptance phase is to further
evaluate changes in the payoffs between ubi and uti. Each
agent i ∈ N commits to an acceptance strategy, denoted
by sai ∈ Si, over the entire acceptance phase. Each agent’s
acceptance strategy is selected according to the following.

• Content, mi = C: When agent i is content, its acceptance
strategy is chosen as follows:

sai =
{
sti if uti > ubi + ε,
sbi if uti ≤ ubi + ε.

(12)

That is, players only repeat their trial strategy if their
performance was high enough relative to the performance
of the baseline strategy.

• Discontent, mi = D: When agent i is discontent, the
acceptance strategy is set as sai = sti.

Following the acceptance phase, each agent computes its
average utility:

uai =
1
p̄

p̄(3k+3)∑
τ=p̄3(k+2)+1

Ui
(
sa1(z(τ), . . . , san(z(τ))

)
. (13)

Here, uai is viewed as an assessment of the performance
associated with the baseline strategy sai .

State Dynamics: After the agent dynamics comes the state
dynamics which specifies how the state of each agent
evolves. The state of each agent i ∈ N at the beginning
of the k+ 1-st stage, i.e., xi(k+ 1), is influenced purely its
state at the beginning of the k-th period, i.e., xi(k), strategies
sbi , s

t
i and sai , and payoffs received during the k-th period.

State dynamics are broken into the following cases:

– Content and No Experimentation, mi = C, sti = sbi : If
agent i was content at the start of the k-th period and did
not experiment in the trial phase, its state at the beginning
of the (k + 1)-st period is chosen as follows:

xi(k + 1) =
{ [

sai = sbi , C
]

if uai ≥ ubi − ε,[
sai = sbi , D

]
if uai < ubi − ε. (14)

Accordingly, if the agent’s average payoff during the accep-
tance phase is low enough, then it will become discontent.

– Content and Experimentation, mi = C, sti 6= sbi : If agent i
was content at the start of the k-th period and experimented
during the trial phase, its state at the beginning of the (k+1)-
st period is chosen as

xi(k + 1) = [sai , C] . (15)

In this case the agent’s average payoff during the acceptance
phase does not impact its underlying state dynamics.

– Discontent, mi = D: If agent i was discontent at the start
of the k-th period, its state at the beginning of the (k+1)-th
period is chosen as follows

xi(k + 1) =
{

[sai , C] w.p. ε1−ua
i ,

[sai , D] w.p. 1− ε1−ua
i .

(16)



Here, the agents are more likely to become content with
strategies the yield higher average payoffs.

C. Main Result
We focus on games where there is some degree of

coupling between agents’ utility functions. The following
definition of interdependence, taken from [24], captures this
notion.

Definition 1: A game G with agents N = {1, 2, . . . , n}
is said to be interdependent if, for every a ∈ A and every
proper subset of agents J ⊂ N , there exists an agent
i /∈ J and a choice of actions a′J ∈

∏
j∈J Aj such that

Ui(a′J , a−J) 6= Ui(aJ , a−J).
The following theorem characterizes the limiting behavior

associated with the proposed algorithm.
Theorem 1: Let G = (N, {Ui}, {Ai}) be a finite interde-

pendent game. First, suppose q(S) ∩ CCE 6= ∅. Given any
probability p < 1, if the exploration rate ε is sufficiently
small, then for all sufficiently large times t,

Pr

[
q(s(t)) ∈ arg max

q∈q(S)∩CCE

∑
i∈N

∑
a∈A

Ui(a)qa
]
> p.

Alternatively, suppose q(S) ∩ CCE = ∅. Given any proba-
bility p < 1, if the exploration rate ε is sufficiently small,
then for all sufficiently large times t,

Pr

[
q(s(t)) ∈ arg max

q∈q(S)

∑
i∈N

∑
a∈A

Ui(a)qa
]
> p.

Observe that the proposed algorithm is of the form (6).
Moreover, the condition q(S) ∩ CCE 6= ∅ implies the
agents can realize specific joint distributions that are coarse
correlated equilibria through the joint strategy set S. When
this is the case, the above algorithm ensures the agents
predominantly play a strategy s ∈ S where the resulting
joint distribution q(s) corresponds to the efficient coarse
correlated equilibrium. The condition q(S) ∩ CCE = ∅
implies there are no agent strategies that can characterize
a coarse correlated equilibrium. When that is the case,
the above algorithm ensures the agents predominantly play
strategies that have full support on the action profiles
a ∈ A that maximize the sum of the agents payoffs, i.e.,
arg maxa∈A

∑
i∈N Ui(a).

IV. PROOF OF THEOREM 1
The decision making process defined in Section III

ensures the evolution of agents’ states over periods
{0, 1, 2, . . . } can be represented as a finite ergodic Markov
chain over state space X = X1 × · · · × Xn, where Xi =
Si × {C,D} denotes the set of possible states of agent
i. Let P ε denote this Markov chain for some ε > 0.
Proving Theorem 1 requires characterizing the stationary
distribution of the family of Markov chains {P ε}ε>0 for
all sufficiently small ε. We use the theory of resistance
trees for regular perturbed processes, introduced in [25], to
accomplish this task. First we review this theory and then
we prove Theorem 1.

A. Background: Resistance Trees
Let P 0 be the transition matrix for some nominal Markov

process, and let P ε be a perturbed version of this process

where the size of the perturbation is ε > 0. We focus on the
following class of Markov chains.

Definition 2: A family of Markov chains defined over a
finite state space X , whose transition matrices are denoted
by {P ε}ε>0, is called a regular perturbed process of a
nominal process P 0 if the following conditions are satisfied
for all x, x′ ∈ X:
(1) There exists a constant c > 0 such that P ε is aperiodic
and irreducible for all ε ∈ (0, c].
(2) limε→0 P

ε
x→x′ = P 0

x→x′ .
(3) If P εx→x′ > 0 for some ε > 0, then there exists a constant
r(x→ x′) ≥ 0 such that

0 < lim
ε→0+

P εx→x′

εr(x→x′)
<∞. (17)

Constant r(x→ x′) is the resistance of transition x→ x′.
For any ε > 0, let µε = {µεx}x∈X ∈ ∆(X) denote the

unique stationary distribution associated with P ε. The theory
of resistance trees presented in [25] provides efficient mech-
anisms for computing the support of the limiting stationary
distribution, i.e., limε→0+ µε, commonly referred to as the
stochastically stable states.

Definition 3: A state x ∈ X is stochastically stable [6]
if limε→0+ µεx > 0, where µε is the stationary distribution
corresponding to P ε.

We adopt the technique provided in [25] for identifying
the stochastically stable states through a graph theoretic
analysis over recurrent classes of the unperturbed process
P 0. Let Y0, Y1, . . . , Ym denote the recurrent classes of
P 0. Define Pij to be the set of all paths connecting
Yi to Yj , i.e., a path p ∈ Pij is of the form p =
{(x1, x2), (x2, x3), . . . , (xk−1, xk)} where x1 ∈ Yi and
xk ∈ Yj . The resistance associated with transitioning from
Yi to Yj is defined as

r(Yi, Yj) = min
p∈Pij

∑
(x,x′)∈p

r(x, x′). (18)

Recurrent classes Y0, Y1, . . . , Ym satisfy: (i) there is a zero
resistance path, i.e., a sequence of transitions each with zero
resistance, from any state x ∈ X to at least one state y in one
of the recurrent classes; (ii) for any recurrent class Yi and
any states yi, y′i ∈ Yi, there is a zero resistance path from yi
to y′i; and (iii) for any state yi ∈ Yi and yj ∈ Yj , Yi 6= Yj ,
any path from yi to yj has strictly positive resistance.

The first step in identifying the stochastically stable states
is to determine resistances between recurrent classes. The
second step is to analyze spanning trees of the weighted,
directed graph G whose vertices are recurrent classes of the
process P 0, and whose edges are weighted by resistances
between classes in (18). Denote Ti to be the set of all
spanning trees of G rooted at recurrent class Yi. We compute
the stochastic potential of each recurrent class, defined as:

Definition 4: The stochastic potential of recurrent class
Yi is

γ(Yi) = min
T ∈Ti

∑
(Y,Y ′)∈T

r(Y, Y ′)

The following theorem characterizes the recurrent classes
that are stochastically stable.

Theorem 2 ( [25]): Let P 0 be the transition matrix for
a stationary Markov process over the finite state space X



with recurrent communication classes Y1, . . . , Ym. For each
ε > 0, let P ε be a regular perturbation of P 0 with a unique
stationary distribution µε. Then:
(1) As ε→ 0+, µε converges to a stationary distribution µ0

of P 0.
(2) A state x ∈ X is stochastically stable if and only if x is
contained in a recurrent class Yj that minimizes γ(Yj).

B. Proof of Theorem 1
We begin by restating the contributions associated with

Theorem 1 using the terminology of the previous section.
• If q(S)∩CCE 6= ∅, then a state x = {xi = [si,mi]}i∈N is

stochastically stable if and only if (i) mi = C for all i ∈ N
and (ii) the strategy profile s = (s1, . . . , sn) constitutes an
efficient coarse correlated equilibrium, i.e.,

q(s) ∈ arg max
q∈q(S)∩CCE

∑
i∈N

∑
a∈A

Ui(a)qa. (19)

• If q(S)∩CCE = ∅, then a state x = {xi = [si,mi]}i∈N is
stochastically stable if and only if (i) mi = C for all i ∈ N
and (ii) the strategy profile s = (s1, . . . , sn) constitutes an
efficient action profile, i.e.,

q(s) ∈ arg max
q∈q(S)

∑
i∈N

∑
a∈A

Ui(a)qa. (20)

For convenience, and with an abuse of notation, define

Ui(s) :=
∑
a∈A

Ui(a)qa(s) (21)

to be agent i’s expected utility with respect to distribution
q(s), where s ∈ S.

The proof of Theorem 1 will consist of the following
steps:
(1) Define the unperturbed process, P 0.
(2) Determine the recurrent classes of process P 0.
(3) Establish transition probabilities of process P ε.
(4) Determine the stochastically stable states of P ε using
Theorem 2.

Part 1: Defining the unperturbed process

The unperturbed process P 0 is effectively the process de-
fined in Section III where ε = 0. We highlight the attributes
of the unperturbed process that may not be immediately
clear.
• If agent i is content, i.e., xi = [sbi , C], the trial action

is sti = sbi with probability 1. Otherwise, if agent i is
discontent, the trial action is selected according to (10).

• The baseline utility ubi in (8) associated with joint baseline
strategy sb is now of the form

ubi = Ui(sb). (22)

This results from invoking the law of large numbers since
p̄ = d1/εnc+1e. The trial utility uti and acceptance utility
uai are also of the same form.

• A content player will only become discontent if uai < ubi
where associated payoffs are computed according to (22).

Part 2: Recurrent classes of the unperturbed process

The second part of the proof analyzes the recurrent classes
of the unperturbed process P 0 defined above. The following

lemma identifies the recurrent classes of P 0.
Lemma 1: A state x = (x1, x2, . . . , xn) ∈ X belongs to

a recurrent class of the unperturbed process P 0 if and only
if the state x fits into one of following two forms:
• Form #1: The state for each agent i ∈ N is of the form
xi =

[
sbi , C

]
where sbi ∈ Si. Each state of this form

comprises a distinct recurrent classes. We represent the
set of states of this form by C0.

• Form #2: The state for each agent i ∈ N is of the form
xi =

[
sbi , D

]
where sbi ∈ Si. All states of this form

comprise a single recurrent class, represented by D0.
We omit the proof of Lemma 1 for brevity.

Part 3: Transition probabilities of process P ε

The transition probability P εx→x+ for any x, x+ ∈ X is

P εx→x+ =
∑
s̃t∈S

∑
s̃a∈S

(
Pr[x+ | st = s̃t, sa = s̃a]

× Pr[sa = s̃a | st = s̃t] Pr[st = s̃t]
)
. (23)

Strategy selections and state transitions also depend on state
x; for brevity we do not explicitly write this dependence.
Here, st and sa represent joint trial and acceptance strategies
during the period before the transition to x+.

The detailed form of these transition probabilities may be
determined using probabilities defined in Section III and by
integrating over the possible payoffs each agent may receive,
ui ∈ [0, 1]. We omit this detailed discussion for brevity.

Lemma 2: The process P ε is a regular perturbation of
P 0.

It is straightforward that P ε satisfies the first two con-
ditions of Definition 2 with respect to P 0, and transition
probabilities satisfy (17) due to the fact that the dominant
terms in P εx→y are polynomial in ε.

Part 3: Determining the stochastically stable states

We begin by defining

C? := {x = {[si, C]}i∈N : q(s) ∈ CCE} ⊆ C0

Here, we show that, if C? is nonempty, then a state x is
stochastically stable if and only if q(s) satisfies (19). The
fact that q(s) must satisfy (20) when C? = ∅ follows in
a similar manner. To accomplish this task, we (1) estab-
lish resistances between recurrent classes, and (2) compute
stochastic potentials of each recurrent class.

Resistances between recurrent classes
Claim 1: Resistances between recurrent classes satisfy:

• For x ∈ C0 with corresponding joint strategy s, r(D0 →
x) =

∑
i∈N (1− Ui(s)).

• For a transition of the form x → y, where x ∈ C? and
y ∈ (C0 ∪D0) \ {x}, r(x→ y) ≥ 2c.

• For a transition of the form x → y where x ∈ C0 \ C?
and y ∈ (C0 ∪D0) \ {x}, r(x→ y) ≥ c.

• For every x ∈ C0 \ C?, there exists a path x = x0 →
x1 → · · · → xm ∈ C? ∪ D0 with resistance r(xj →
xj+1) = c, ∀j ∈ {0, 1, . . . ,m− 1}.
These resistances are computed in a similar manner to

those in [16]; however, care must be taken due to the fact



that there is a small probability that average received utilities
fall outside of Ui(s)±ε during a phase in which joint strategy
s is played. The detailed proof is omitted for brevity.

Stochastic potentials
The following lemma specifies stochastic potentials of

each recurrent class. Using resistances from Claim 1, the
stochastic potentials follow from the same arguments as in
[16]; we omit the proof for brevity.

Lemma 3: Let x ∈ C0 \ C? with corresponding joint
strategy s, and let x? ∈ C? with corresponding joint strategy
s?. The stochastic potentials of each recurrent class are:

γ(D0) = c|C0 \ C?|+ 2c|C?|,
γ(x) =

(|C0 \ C?| − 1
)
c+ 2c|C?|+

∑
i∈N

(1− Ui(s)),

γ(x?) = |C0 \ C?|c+ 2c (|C?| − 1) +
∑
i∈N

(1− Ui(s?)),
We now use Lemma 3 to complete the proof of The-

orem 1. For the first part, suppose C? is nonempty, and
let x? ∈ arg maxx∈C?

∑
Ui(s), where joint strategy s

corresponds to state x. Then,

γ(x?) = |C0 \ C?|c+ 2c (|C?| − 1) +
∑
i∈N

(1− Ui(s∗))

< |C0 \ C?|c+ 2c|C?| (since c ≥ n)
= γ(D).

For x ∈ C0,

γ(x?) = |C0 \ C?|c+ 2c (|C?| − 1) +
∑
i∈N

(1− Ui(s?))

< |C0 \ C? − 1|c+ 2c (|C?|) +
∑
i∈N

(1− Ui(s))

= γ(x).

For x ∈ C? with x /∈ arg maxx∈C?

∑
Ui(s),

γ(x?) = |C0 \ C?|c+ 2c (|C?| − 1) +
∑
i∈N

(1− Ui(s?))

< |C0 \ C?|c+ 2c (|C?| − 1) +
∑
i∈N

(1− Ui(s)

= γ(x).

Applying Theorem 2, x? is stochastically stable. Since all
other states have strictly larger stochastic potential, only
states x? ∈ C? with x? ∈ arg maxx∈C?

∑
Ui(s) are

stochastically stable. From state x?, if each agent plays
according to its baseline strategy, then the probability that
joint action a ∈ A is played at any given time is Pr(a =
a′) = qa

′(s?). This implies that a CCE which maximizes the
sum of agents’ payoffs is played with high probability as
ε→ 0, after sufficient time has passed.

The second part of the theorem follows similarly by
considering the case when C? = ∅.

V. CONCLUSION

The majority of distributed learning literature has focused
on identifying learning rules that converge to Nash equilib-
ria. However, alternate forms of behavior, such as correlated
equilibrium, can often lead to significant improvements in

system-wide behavior. This paper focuses on identifying
learning rules that converge to joint distributions that do
not necessarily constitute Nash equilibria. In particular, we
have extended the work of [16] to provide a distributed
learning rule that ensures agents play strategies that con-
stitute efficient coarse correlated equilibria. A mild variant
of the proposed algorithm could also ensure the agents play
strategies that constitute correlated equilibria, as opposed to
coarse correlated equilibria. Future work seeks to investigate
the applicability of such algorithms in the context of team
versus team zero-sum games.
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