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Fast Convergence in Semi-Anonymous Potential Games
Holly Borowski and Jason R. Marden

Abstract—Log-linear learning has been extensively studied in
both the game theoretic and distributed control literature. It
is appealing for many applications because it often guarantees
that the agents’ collective behavior will converge in probability
to the optimal system configuration. However, the worst case
convergence time can be prohibitively long, i.e., exponential in
the number of players. Building upon the work in [22], we
formalize a modified log-linear learning algorithm whose worst
case convergence time is roughly linear in the number of players.
We prove this characterization for a class of potential games
where agents’ utility functions can be expressed as a function
of aggregate behavior within a finite collection of populations.
Finally, we show that the convergence time remains roughly linear
in the number of players even when the players are permitted
to enter and exit the game over time.

I. INTRODUCTION

Game theoretic learning algorithms have gained traction
as a design tool for distributed control systems [9], [10],
[17], [23], [25]. Here, a static game is repeated over time,
and agents revise their strategies based on their objective
functions and on observations of other agents’ behavior.
Emergent collective behavior for such revision strategies has
been studied extensively in the literature, e.g., fictitious play
[8], [15], [18], regret matching [12], and log-linear learning
[1], [5], [22]. Although many of these learning rules have
desirable asymptotic guarantees, their convergence times either
remain uncharacterized or are prohibitively long [7], [11], [13],
[22]. Characterizing convergence rates is key to determining
whether a distributed algorithm is desirable for system control.

In many multi-agent systems, the agent objective functions
can be designed to align with the system-level objective func-
tion, yielding a potential game [19] whose potential function
is precisely the system objective function. Here, the optimal
collective behavior of a multi-agent system corresponds to
the Nash equilibrium that optimizes the potential function.
Hence, learning algorithms which converge to this efficient
Nash equilibrium have proven useful for distributed control.

Log-linear learning is one algorithm that accomplishes this
task [5]. Log-linear learning is a perturbed best reply process
where agents predominantly select the optimal action given
their beliefs about other agents’ behavior; however, the agents
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occasionally make mistakes, selecting suboptimal actions with
a probability that decays exponentially with respect to the
associated payoff loss. As noise levels approach zero, the
resulting process has a unique stationary distribution with full
support on the efficient Nash equilibria. By designing agents’
objective functions appropriately, log-linear learning can be
used to define distributed control laws which converge to
optimal steady-state behavior in the long run.

Unfortunately, worst-case convergence rates associated with
log-linear learning are exponential in the game size [22].
This stems from inherent tension between desirable asymptotic
behavior and convergence rates. The tension arises because
small noise levels are necessary to ensure that the mass of
the stationary distribution lies primarily on the efficient Nash
equilibria; however, small noise levels also make it difficult to
exit inefficient Nash equilibria, degrading convergence times.

Positive convergence rate results for log-linear learning
and its variants are beginning to emerge for specific game
structures [2], [14], [20], [22]. For example, in [20] the
authors study the convergence rates of log-linear learning
for a class of coordination games played over graphs. They
demonstrate that underlying convergence rates are desirable
provided that the interaction graph and its subgraphs are
sufficiently sparse. Alternatively, in [22] the authors introduce
a variant of log-linear learning and show that convergence
times grow roughly linearly in the number of players for a
special class of congestion games over parallel networks. They
also show that convergence times remain linear in the number
of players when players are permitted to exit and enter the
game. Although these results are encouraging, the restriction
to parallel networks is severe and hinders the applicability of
such results to distributed engineering systems.

We focus on identifying whether the positive convergence
rate results above extend beyond symmetric congestion games
over parallel networks to games of a more general structure
relevant to distributed engineering systems. Such guarantees
are not automatic because there are many simplifying attributes
associated with symmetric congestion games that do not
extend in general (see Example 2). The main contributions
of this paper are as follows:

– We formally define a subclass of potential games, called
semi-anonymous potential games, which are parameterized by
populations of agents where each agent’s objective function
can be evaluated using only information regarding the agent’s
own decision and the aggregate behavior within each popula-
tion. Agents within a given population have identical action
sets, and their objective functions share the same structural
form. The congestion games studied in [22] could be viewed as
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a semi-anonymous potential game with only one population.1

– We introduce a variant of log-learning learning that extends
the algorithm in [22]. In Theorem 1, we prove that the
convergence time of this algorithm grows roughly linearly in
the number of agents for a fixed number of populations. This
analysis explicitly highlights the potential impact of system-
wide heterogeneity, i.e., agents with different action sets or
objective functions, on the convergence rates. Furthermore, in
Example 4 we demonstrate how a given resource allocation
problem can be modeled as a semi-anonymous potential game.
– We study the convergence times associated with our modified
log-linear learning algorithm when the agents continually
enter and exit the game. In Theorem 2, we prove that the
convergence time of this algorithm remains roughly linear in
the number of agents provided that the agents exit and enter
the game at a sufficiently slow rate.

The forthcoming analysis is similar in structure to the
analysis presented in [22]. We highlight the explicit differences
between the two proof approaches throughout, and directly
reference lemmas within [22] when appropriate. The central
challenge in adapting and extending the proof in [22] to the
setting of semi-anonymous potential games is dealing with the
growth of the underlying state space. Note that the state space
in [22] is characterized by the aggregate behavior of a single
population while the state space in our setting is characterized
by the Cartesian product of the aggregate behavior associated
with several populations. The challenge arises from the fact
that the employed techniques for analyzing the mixing times
of this process, i.e., Sobolev constants, rely heavily on the
structure of this underlying state space.

II. SEMI-ANONYMOUS POTENTIAL GAMES

Consider a game with agents N = {1, 2, . . . , n}. Each agent
i ∈ N has a finite action set denoted by Ai and a utility
function Ui : A → R, where A =

∏
i∈N Ai denotes the set of

joint actions. We express an action profile a ∈ A as (ai, a−i)
where a−i = (a1, . . . , ai−1, ai+1, . . . , an) denotes the actions
of all agents other than agent i. We denote a game G by the
tuple G = (N, {Ai}i∈N , {Ui}i∈N )2.

Definition 1. A game G is a semi-anonymous potential game
if there exists a partition N = (N1, N2, . . . , Nm) of N such
that the following conditions are satisfied:
(i) For any population N` ∈ N and agents i, j ∈ N` we
have Ai = Aj . Accordingly, we say population N` has action
set Ā` = {ā1

` , ā
2
` , . . . , ā

s`

` }3 where s` denotes the number of
actions available to population N`. For simplicity, let p(i) ∈
{1, . . . ,m} denote the index of the population associated with
agent i. Then, Ai = Āp(i) for all agents i ∈ N .
(ii) For any population N` ∈ N , let

X` =

{(
v1
`

n
,
v2
`

n
, . . . ,

vs`

`

n

)
≥ 0 :

s∑̀
k=1

vk` = |N`|

}
(1)

1Semi-anonymous potential games can be viewed as a cross between a
potential game and a finite population game [6].

2For brevity, we refer to G by G = (N, {Ai}, {Ui}).
3We use the notation Ā` to represent the action set of the `th population,

whereas Ai represents the action set of the ith agent.

represent all possible aggregate action assignments for the
agents within population N`. Here, the utility function of any
agent i ∈ N` can be expressed as a lower-dimensional function
of the form Ūi : Āp(i)×X → R where X = X1× · · · ×Xm.
More specifically, the utility associated with agent i for an
action profile a = (ai, a−i) ∈ A is of the form

Ui(a) = Ūi(ai, a|X)

where

a|X = (a|X1 , a|X2 , . . . , a|Xm
) ∈ X, (2)

a|Xj =
1
n

{∣∣{j ∈ N` : aj = āk` }
∣∣}
k=1,...,s`

. (3)

The operator ·|X captures each population’s aggregate behav-
ior in an action profile ·.
(iii) There exists a potential function φ : X → R such that for
any a ∈ A and agent i ∈ N with action a′i ∈ Ai,

Ui(a)− Ui(a′i, a−i) = φ(a|X)− φ((a′i, a−i)|X). (4)

If each agent i ∈ N is alone in its respective partition, the
definition of semi-anonymous potential games is equivalent to
that of exact potential games in [19].

Example 1 (Congestion Games [4]). Consider a conges-
tion game with players N = {1, . . . , n} and roads R =
{r1, r2, . . . , rk}. Each road r ∈ R is associated with a
congestion function Cr : Z+ → R, where Cr(k) is the
congestion on road r with k total users. The action set of each
player i ∈ N represents the set of paths connecting player i’s
source and destination, and has the form Ai ⊆ 2R. The utility
function of each player i ∈ N is given by

Ui(ai, a−i) = −
∑
r∈ai

Cr(|a|r),

where |a|r = |{j ∈ N : r ∈ aj}| is the number of players
in joint action a whose path contains road r. This game is a
potential game with potential function φ : X → R

φ(a|X) = −
∑
r∈R

|a|r∑
k=1

Cr(k). (5)

When the players’ action sets are symmetric, i.e., Ai = Aj
for all agents i, j ∈ N , then a congestion game is a semi-
anonymous potential game with a single population. Such
games, also referred to as anonymous potential games, are the
focus of [22]. When the players’ action sets are asymmetric,
i.e., Ai 6= Aj for at least one pair of agents i, j ∈ N , then a
congestion game is a semi-anonymous potential game where
populations consist of agents with identical path choices. The
results in [22] are not proven to hold for such settings.

The following example highlights issues that arise when
transitioning from a single population to multiple populations.

Example 2. Consider a resource allocation game with n
players and three resources, R = {r1, r2, r3}. Let n be
even and divide players evenly into populations N1 and N2.
Suppose that players in N1 may select exactly one resource
from {r1, r2}, and players in N2 may select exactly one
resource from {r2, r3}. The welfare garnered at each resource
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depends on how many players have selected that resource; the
resource-specific welfare functions are

Wr1(k) = 2k,

Wr2(k) = min
{

3k,
3
2
n

}
,

Wr3(k) = k.

where k ∈ {0, 1, . . . , n} represents the number of agents
selecting a given resource. The total system welfare is

W (a) =
∑
r∈R

Wr(|a|r)

for any a ∈ A, where |a|r represents the number of agents
selecting resource r under action profile a. Assign each agent’s
utility according to its marginal contribution to the system-
level welfare: for agent i and action profile a

Ui(a) = W (a)−W (∅, a−i) (6)

where ∅ indicates that player i did not select a resource. The
marginal contribution utility in (6) ensures that the resulting
game is a potential game with potential function W [24].

If the agents had symmetric action sets, i.e., if Ai =
{r1, r2, r3} for all i ∈ N , then this game has exactly one
Nash equilibrium with n/2 players at resource r1 and n/2
players at resource r2. This Nash equilibrium corresponds to
the optimal allocation.

In contrast, the two population scenario above has many
Nash equilibria, two of which are: (i) an optimal Nash equi-
librium in which all players from N1 select resource r1 and all
players from N2 select resource r2, and (ii) a suboptimal Nash
equilibrium in which all players from N1 select resource r2

and all players from N2 select resource r3. This large number
of equilibria will significantly slow any equilibrium selection
process, such as log-linear learning and its variants.

III. MAIN RESULTS

Example 2 invites the question: can a small amount of
heterogeneity break down the fast convergence results of [22]?
In this section, we present a variant of log-linear learning [5]
that extends the algorithm for single populations in [22]. In
Theorem 1 we prove that for any semi-anonymous potential
game our algorithm ensures (i) the potential associated with
asymptotic behavior is close to the maximum and (ii) the
convergence time grows roughly linearly in the number of
agents for a fixed number of populations. In Theorem 2 we
show that these guarantees still hold when agents are permitted
to enter and exit the game. An algorithm which converges
quickly to the potential function maximizer is useful for multi-
agent systems because agent objective functions can often be
designed so that the potential function is identical to the system
objective function as in Example 2.

A. Modified Log-Linear Learning

The following modification of the log-linear learning algo-
rithm extends the algorithm in [22]. Let a(t) ∈ A be the joint

action at time t ≥ 0. Each agent i ∈ N updates its action
upon ticks of a Poisson clock with rate αn/zi(t), where

zi(t) = |{k ∈ Np(i) : ak(t) = ai(t)}|,

and α > 0 is a design parameter which dictates the expected
total update rate. A player’s update rate is higher if he is not
using a common action within his population. To continually
modify his clock rate, each player must know the value of
zi(t), i.e., the number of players within his population sharing
his action choice, for all t ∈ R. In many cases, agents also
need this information to evaluate their utilities, e.g., when
players’ utilities are their marginal contribution to the total
welfare, as in Example 2.

When player i’s clock ticks, he chooses action ai ∈ Āp(i) =
Ai probabilistically according to

Prob[ai(t+) = ai
∣∣ a(t)] =

eβUi(ai,a−i(t))∑
a′i∈Ai

eβUi(a′i,a−i(t))

=
eβφ(a(t)|X )∑

a′i∈Ai
eβφ((a′i,a−i(t))|X )

, (7)

for any ai ∈ Ai, where ai(t+) indicates the agent’s revised
action and β is a design parameter that determines how likely
an agent is to choose a high payoff action. As β →∞, payoff
maximizing actions are chosen, and as β → 0, agents choose
from their action sets with uniform probability. The new joint
action is of the form a(t+) = (ai(t+), a−i(t)) ∈ A, where
t ∈ R+ is the time immediately before agent i’s update occurs.
For a discrete time implementation of this algorithm and a
comparison with the algorithm in [22], please see Appendix B.

The expected number of updates per second for the contin-
uous time implementation of our modified log-linear learning
algorithm is lower bounded by mαn and upper bounded by
(|Ā1| + · · · + |Ām|)αn. To achieve an expected update rate
at least as fast as the standard log-linear learning update rate,
i.e., at least n per second, we set α ≥ 1/m. These dynamics
define an ergodic, reversible Markov process for any α > 0.

B. Semi-Anonymous Potential Games

Theorem 1 bounds the convergence time for modified log-
linear learning in a semi-anonymous potential game and ex-
tends the results of [22] to semi-anonymous potential games.
For notational simplicity, define s := | ∪mj=1 Aj |.

Theorem 1. Let G = (N, {Ai}, {Ui}) be a semi-anonymous
potential game with aggregate state space X and potential
function φ : X → [0, 1]. Suppose agents play according to the
modified log-linear learning algorithm described above, and
the following conditions are met:
(i) The potential function is λ-Lipschitz, i.e., there exists λ ≥ 0
such that

|φ(x)− φ(y)| ≤ λ‖x− y‖1, ∀x, y ∈ X.

(ii) The number of players within each population is suffi-
ciently large:

m∑
i=1

|Ni|2 ≥
m∑
i=1

|Āi| −m.
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For any fixed ε ∈ (0, 1), if β is sufficiently large, i.e.,

β ≥ max
{

4m(s− 1)
ε

log 2ms,
4m(s− 1)

ε
log

8msλ
ε

}
,

(8)
then

E[φ(a(t)|X)] ≥ max
x∈X

φ(x)− ε (9)

for all

t ≥ 22msc1e
3βm(m(s− 1))!2n

4α
× 

log log(n+ 1)ms−m + log β + 2 log
1

ε

!
(10)

where c1 is a constant that depends only on s.

We prove Theorem 1 in Appendix C. This theorem explicitly
highlights the role of system heterogeneity, i.e., m > 1 distinct
populations, on convergence times of the process. For the case
when m = 1, Theorem 1 recovers the results of [22]. Observe
that for a fixed number of populations, the convergence time
grows as n log log n. Furthermore, note that a small amount
of system heterogeneity does not have a catastrophic impact
on worst-case convergence times as suggested by Example 2.

It is important to note that our bound is exponential in the
number of populations and in the total number of actions.
Therefore our results do not guarantee fast convergence with
respect to these parameters. However, our convergence rate
bounds may be conservative in this regard. Furthermore, as
we will show in Section IV, a significantly smaller value of
β may often be chosen in order to further speed convergence
while still retaining the asymptotic properties guaranteed in
(9).

C. Time Varying Semi-Anonymous Potential Games

In this section, we consider a trajectory of semi-anonymous
potential games to model the scenario where agents enter and
exit the system over time,

G = {Gt}t≥0 = {N t, {Ati}i∈Nt , {U ti }i∈Nt}t≥0

where, for all t ∈ R+, the game Gt is a semi-anonymous
potential game, and the set of active players, N t, is a finite
subset of N. We refer to each agent i ∈ N \ N t as inactive;
an inactive agent has action set Ati = ∅ at time t. Define
X := ∪t∈R+Xt, where Xt is the finite aggregate state space
corresponding to game Gt. At time t, denote the partitioning
of players per Definition 1 by N t = {N t

1, N
t
2, . . . , N

t
m}. We

require that there is a fixed number of populations, m, for all
time, and that the j-th population’s action set is constant, i.e.,
∀j ∈ {1, 2, . . . ,m}, ∀t1, t2 ∈ R+, Āt1j = Āt2j . We write the
fixed action set for players in the j-th population as Āj .

Theorem 2. Let G be a trajectory of semi-anonymous po-
tential games with state space X and time-invariant potential
function φ : X → [0, 1]. Suppose agents play according to
the modified log-linear learning algorithm and Conditions (i)
and (ii) of Theorem 1 are satisfied. Fix ε ∈ (0, 1), assume
the parameter β satisfies (8) and the following additional
conditions are met:

(iii) for all t ∈ R+, the number of players satisfies:

|N t| ≥ max
{

4αme−3β

22msc1m2(m(s− 1))!2
, 2βλ+ 1

}
, (11)

(iv) there exists k > 0 such that

|N t
i | ≥ |N t| / k, ∀i ∈ {1, 2, . . . ,m}, ∀t ∈ R+, (12)

(v) there exists a constant

Λ ≥ 8c0ε−2e3β(6βλ+ eβk(s− 1)) (13)

such that for any t1, t2 with |t1 − t2| ≤ Λ,∣∣{i ∈ N t1 ∪N t2 : At1i 6= A
t1
i

}∣∣ ≤ 1, (14)

and, if i ∈ N t1 ∩N t2 , then i ∈ N t
j for some j ∈ {1, . . . ,m}

and for all time t ∈ [t1, t2], i.e., agents may not switch
populations over this interval. Here, c0 and c1 do not depend
on the number of players, and hence the constant Λ does not
depend on n.

Then,
E[φ(a(t)|X )] ≥ max

x∈X(t)
φ(x)− ε (15)

for all

t ≥ |N0|e3βc0

(
(ms−m)! log(|N0|+ 2) + β

ε2

)
. (16)

Theorem 2 states that, if player entry and exit rates are
sufficiently slow as in Condition (v), then the convergence
time of our algorithm is roughly linear in the number of
players. However, the established bound grows quickly with
the number of populations. Note that selection of parameter β
impacts convergence time, as reflected in (16): larger β tends
to slow convergence. However, the minimum β necessary to
achieve an expected potential near the maximum, as in (15),
is independent of the number of players, as given in (8). The
proof of Theorem 2 follows a similar structure to the proof
of Theorem 4 in [22] and is hence omitted for brevity. The
significant technical differences arise due to differences in the
size of the state space when m > 1. These differences give
rise to Condition (iv) in our theorem.

IV. ILLUSTRATIVE EXAMPLES

In this section, we consider resource allocation games with
a similar structure to Example 2. In each case, agents’ utility
functions are defined by their marginal contribution to the
system welfare, W , as in (6). Hence, each example is a
potential game with potential function W .

Modified log-linear learning defines an ergodic, continuous
time Markov chain; we denote its transition kernel by P and
its stationary distribution by π. For relevant preliminaries on
Markov chains, please refer to Appendix A, and for a precise
definition of the transition kernel and stationary distribution
associated with modified log-linear learning, please refer to
Appendices B and C.

Unless otherwise specified, we consider games with n
players distributed evenly into populations N1 and N2. There
are three resources, R = {r1, r2, r3}. Players in population
N1 may choose a single resource from {r1, r2} and players
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in population N2 may choose a single resource from {r2, r3}.
We represent a state by

x =
(
x1

1, x
1
2, x

2
2, x

2
3

)
, (17)

where nx1
1 and nx1

2 are the numbers of players from N1

choosing resources r1 and r2. Likewise, nx2
2 and nx2

3 are
the numbers of players from N2 choosing resources r2 and
r3 respectively. Welfare functions for each resource depend
only on the number of players choosing that resource, and
are specified in each example. The system welfare for a given
state is the sum of the welfare garnered at each resource, i.e.,

W (x) = Wr1(nx1
1) +Wr2(n(x1

2 + x2
2)) +Wr3(nx2

3).

Player utilities are their marginal contribution to the total
welfare, W , as in (6).

In Example 3, we directly the compute convergence times
as in Theorem 1:

min{t : EP t(y,·)W (x) ≥ max
x∈X

W (x)− ε, ∀y ∈ X}, (18)

for modified log-linear learning, the variant of [22], and
standard log-linear learning. This direct analysis is possible
due to the example’s relatively small state space.

Example 3. Here, we compare convergence times of our log-
linear learning variant, the variant of [22], and standard log-
linear learning. The transition kernels for each process are
described in detail in Appendix B.

Starting with the setup described above, we add a third
population, N3. Agents in population N3 contribute nothing to
the system welfare and may only choose resource r2. Because
the actions of agents in population N3 are fixed, we represent
states by aggregate actions of agents in populations N1 and
N2 as in (17). The three resources have the following welfare
functions for each x =

(
x1

1, x
1
2, x

2
2, x

2
3

)
∈ X:

Wr1(x) = 2nx1
1,

Wr2(x) = min
{

3(nx1
1 + nx2

1),
3
2

(nx1
2 + nx2

2)
}
,

Wr3(x) = nx2
3.

Our goal in this example is to achieve an expected total welfare
that is within 98% of the maximum welfare.

We fix the number of players in populations N1 and N2 at
n1 = n2 = 7, and vary the number of players in population
n3 to examine the sensitivity of each algorithm’s convergence
rate to the size of N3.

In our variant of log linear learning, increasing the size
of population N3 does not change the probability that a
player from population N1 or N2 will update next. However,
for standard log-linear learning and for the variant in [22],
increasing the size of population N3 significantly decreases
the probability that players from N1 or N2 who are currently

choosing resource r2 will be selected for update.4

We select β in all cases so that, as t → ∞, the expected
welfare associated with the resulting stationary distribution is
within 98% of its maximum. Then we examine the time it takes
to come within ε = 0.05 of this expected welfare. We multiply
convergence times by the number of players, n, to analyze
the expected number of updates required to reach the desired
welfare. These numbers represent the convergence times when
the expected total number of updates per unit time is held
constant as n increases. Table 3 depicts β values and expected
numbers of updates.

For both log-linear learning and our modification, the re-
quired β to reach an expected welfare within 98% of the
maximum welfare is independent of n3 and can be computed
using the expressions

πLLL
x ∝ eβW (x)

(
n1

nx1
1, nx

1
2

)(
n2

nx2
2, nx

2
3

)
, (19)

and πMLLL
x ∝ eβW (x). (20)

These stationary distributions can be verified using reversibil-
ity arguments with the standard and modified log-linear
learning probability transition kernels, defined in [22] and
Appendix B respectively. Unlike standard log-linear learning
and our variant, the required β to reach an expected welfare
of 98% of maximum for the log-linear learning variant of
[22] does change with n3. For each value of n, we use the
probability transition matrix to determine the necessary values
of β which yield an expected welfare of 98% of its maximum.

Our algorithm converges to the desired expected welfare
in fewer updates than both alternate algorithms for all tested
values of n3, showing that convergence rates for log linear
learning and the variant from [22] are both more sensitive to
the number of players in population 3 than our algorithm.5

We are able to determine convergence times in Example 3
using each algorithm’s probability transition matrix, P , be-
cause the state space is relatively small. Here, we directly
compute the distance of distribution µ(t) = µ(0)P t to the
stationary distributions, πLLL and πMLLL for the selected
values of β, where P and π. Examples 4 and 6, however, have
significantly larger state spaces, making similar computations
with the probability transition matrix unrealistic. Thus, instead
of computing convergence times as in (18) we repeatedly
simulate our algorithm from a worst case initial state and
approximate convergence times based on average behavior.
This method does not directly give the convergence time of
Theorem 1, but the average performance over a sufficiently
large number of simulations is expected to reflect expected

4Recall that in our log-linear learning variant and the one introduced in
[22], an updating player chooses a new action according to (7); the algorithms
differ only in agents’ update rates. In our algorithm, an agent i in population
Nj ’s update rate is αn/ zji (t), where zji (t) is the number of agents from
population j playing the same action as agent i at time t. In the algorithm in
[22], agent i’s update rate is αn/ z̃i(t), where z̃i(t) is the total number of
agents playing the same action as agent i.

5A high update rate for players in population N3 was undesirable because
they contribute no value. While this example may seem contrived, mild
variations would exhibit similar behavior. For example, consider a scenario in
which a relatively large population that contributes little to the total welfare
may choose from multiple resources.
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Algorithm n3 β Expected welfare Expected # updates

Standard Log Linear Learning 1 3.77 98% 9430
5 3.77 98% 11947
50 3.77 98% 40250

500 3.77 98% 323277

Log Linear Learning Variant from [22] 1 2.39 98% 1325
5 2.44 98% 1589
50 2.83 98% 3342

500 3.72 98% 15550

Our Log Linear Learning Variant 1 1.28 98% 743
5 1.28 98% 743
50 1.28 98% 743

500 1.28 98% 743

TABLE I: This table corresponds to Example 3. Here, there are three populations of agents, N1, N2, and N3, and three resources
r1, r2, and r3. Agents in population N1 may choose from resources r1 and r2, and agents in population N2 may choose from
resources r2 and r3. Agents in population N3 may only choose resource r2. Welfare functions are given in (19); population
N3 contributes nothing to the overall system welfare. Here, we examine the sensitivity of convergence times to the size of N3,
and keep the sizes of populations N1 and N2 fixed at 7. The third column of this table shows the values of β which yield an
expected total welfare within 98% of the maximum. These values of β are constant for standard log-linear learning and for
our variant, but grow with n for the algorithm in [22]. The final column shows the expected number of updates to achieve the
desired near-maximum welfare. This value is constant for our algorithm, but increases with n for the other two. Global update
rates are a design parameter dictated by parameter α; selecting a global update rate of n per second (α = 1/m), convergence
times would be a factor of n smaller than the number of updates shown.

behavior predicted by the probability transition matrix.

Example 4. In this example we consider a scenario similar
the previous example, without the third population. That is,
agents are evenly divided into two popultions, N1 and N2; we
allow the total number of agents to vary. Agents in N1 may
choose either resource r1 or r2, and agents in N2 may choose
either resource r2 or r3. We consider welfare functions of the
following form:

Wr1(x) =
ex

1
1 − 1
e2

, (21)

Wr2(x) =
e2x1

2+2x2
3 − 1

e2
, (22)

Wr3(x) =
e2.5x2

4 − 1
e2

. (23)

for x = (x1
1, x

1
2, x

2
2, x

2
3) ∈ X. Here, the global welfare

optimizing allocation is ai = r2 for all i ∈ N , i.e.,
xopt = (0, 1/2, 1/2, 0). Similar to Example 2, this exam-
ple has many Nash equilibria, two of which are xopt and
xne = (1/2, 0, 0, 1/2).

We simulated our algorithm with α = 1 / 4 starting from
the inefficient Nash equilibrium, xne. Here, β is chosen to
yield an expected steady state welfare equal to 90% of the
maximum. We examine the time it takes the average welfare
to come within ε = 0.05 of this expected welfare.

Simulation results are shown in Figure 1 averaged over
2000 simulations with n ranging from 4 to 100. Average
convergence times are bounded below by 2n log log n for all

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

Fig. 1: Example 4, number of players vs. average convergence
times. Here, there are two equal-sized populations of agents,
N1 and N2, and three resources r1, r2, and r3. Agents in
population N1 may choose from resources r1 and r2, and
agents in population N2 may choose from resources r2 and
r3. Welfare functions are given in (23).

values of n, and are bounded above by 4n log log n when
n > 30. These results support Theorem 1.

Example 5. In this example we investigate convergence times
for modified log-linear learning when agents have larger
action sets. We consider the situation where n agents are
divided into two populations, N1 and N2. Agents in N1

may choose from resources in A1 = {r1, r2, . . . , rk}, and
agents in population N2 may choose from resources in A2 =
{rk, rk+1, . . . , r2k−1}. That is, each agent may choose from
k different resources, and the two populations share resource
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Fig. 2: 5, number of agents vs. average time to reach
90% of the maximum welfare. Agents are separated into
two populations, N1 and N2. Agents in N1 choose from re-
sources r1, r2, . . . , rk, and agents in N2 choose from resources
rk, rk+1 . . . , r2k−1, where k varies from 5 to 15. Resource
welfare functions are given by (24), agent utility functions are
given by (6), and average convergence times are taken over
200 simulations.

rk. Suppose resource welfare functions are

Wrj
(x) =

{
x / 4n if j 6= k

x2 / n2 if j = k,
(24)

and suppose agents’ utilities are given by their marginal
contribution to the total welfare, as in (6). We allow k to vary
between 5 and 15, and n to vary between 4 and 50.

The welfare maximizing configuration is for all agents to
choose resource rk; however, when all agents in populations
N1 and N2 choose resources rj and r` respectively, with
j, ` 6= k, this represents an inefficient Nash equilibrium. Along
any path from this type of inefficient Nash equilibrium to the
optimal configuration, when n ≥ 4, at least d(n + 4)/8e
agents must make a utility-decreasing decision to move to
resource rk. Moreover, the additional resources are all alterna-
tive suboptimal choices each agent could make when revising
its action; these alternate choices further slow convergence
times. Figure 2 shows the average time it takes to reach a
configuration whose welfare is 90% of the maximum, starting
from an inefficient Nash equilibrium where all agents in N1

choose resource r1 and all agents in N2 choose resource r2k−1.
Parameter β is selected so that the expected welfare is at least
90% of the maximum in the limit as t→∞. For each value
of k, convergence times remain approximately linear in the
number of agents, supporting Theorem 1.6

In Example 6 we compare convergence times for standard
and modified log-linear learning in a sensor-target assignment
problem.

6In this example, convergence times appear super-linear in the size of
populations’ action sets. Note that the bound in (10) is exponential in the the
sum of the sizes of each population’s action set. Fast convergence with respect
to parameter s warrants future investigation; in particular, convergence rates
for our log-linear learning variant may be significantly faster than suggested
in (10) under certain mild restrictions on resource welfare functions (e.g.,
submodularity) or for alternate log-linear learning variants (e.g., binary log-
linear learning [3], [16]).

Example 6 (Sensor-Target Assignment). In this example, we
assign a collection of mobile sensors to four regions. Each re-
gion contains a single target, and the sensor assignment should
maximize the probability of detecting the targets, weighted by
their values. The targets in regions R = {r1, r2, r3, r4} have
values

v1 = 1, v2 = 2, v3 = 3, v4 = 4 (25)

respectively. Three types of sensors will be used to detect the
targets: strong, moderate, and weak. Detection probabilities of
these three sensor types are:

ps = 0.9, pm = 0.5, pw = 0.05. (26)

The numbers of strong and weak sensors are ns = 1 and
nm = 5. We vary the number of weak sensors, nw.

The expected welfare for area ri is the detection probability
of the collection of sensors located at ri weighted by the value
of target i:

Wri(ks, km, kw) = vi
(
1− (1− ps)ks(1− pm)km(1− pw)kw

)
,

where ks, km and kw represent the number of strong, moder-
ate, and weak sensors located at region ri. The total expected
welfare for configuration a is

W (a) =
∑
r∈R

Wr(|a|sr, |a|mr , |a|wr ),

where |a|sr, |a|mr , and |a|wr are the numbers of strong, moder-
ate, and weak sensors choosing region r in a.

We assign agents’ utilities according to their marginal
contributions to the total welfare, W , as in (6). Our goal is to
reach 98% of the maximum welfare. We set the initial state
to be a worst-case Nash equilibrium.7

To approximate convergence times, we simulate each algo-
rithm with the chosen β value8 and compute a running average
of the total welfare over 1000 simulations. In Figure 3 we show
the average number of iterations necessary to reach 98% of
the maximum welfare.

For small values of nw, standard log-linear learning con-
verges more quickly than our modification, but modified log-
linear learning converges faster than the standard version as nw
increases. The difference in convergence times is significant
(≈ 1000 iterations) for intermediate values of nw. As the total

7The initial configuration is chosen by assigning weak agents to the highest
value targets and then assigning strong agents to lower value targets. In
particular, agents are assigned in order of weakest to strongest according
to their largest possible marginal contribution. This constitutes an inefficient
Nash equilibrium. As a similar example, consider a situation with two sensors
with detection probabilities p1 = 0.5 and p2 = 1, and two targets with
values v1 = 2 and v2 = 1. The assignment (sensor 1→ target 1, sensor 2→
target 2) is an inefficient Nash equilibrium, whereas the opposite assignment
is optimal. The large state space makes it infeasible to directly compute a
stationary distribution, and hence also infeasible to compute values of β that
will yield precisely the desired expected welfare. Thus, we use simulations
to estimate the β which yields an expected welfare of 98% of the maximum.

8To approximate the value of β which yields the desired steady-state welfare
of 98% of maximum, we simulated the standard and modified versions of log-
linear learning for 1×106 iterations for a range of β values. We then selected
the β which yields an average welfare closest to the desired welfare during
the final 5000 iterations. Note that we could instead set β according to (8)
for the modified log-linear learning algorithm; however, in order to compare
convergence times of modified and standard log-linear learning, we chose β
to achieve approximately the same expected welfare for both algorithms.
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Fig. 3: Example 6, number of weak sensors vs. average
convergence times. Here, there are three types of sensors
which may choose from four resources. Sensor detection
probabilities and resource values are given in (26) and (25).
We fix the number of strong and moderate sensors and vary the
number of weak sensors. This figure shows the average time it
takes for the average welfare to reach 98% of maximum. The
average is taken over 1000 iterations, and convergence times
correspond to a global update rate of 1 per second. Error bars
show standard deviations of the convergence times.

number of weak sensors increases, (1) the probabilities of
transitions along the paths to the efficient Nash equilibrium
begin to increase for both algorithms, and (2) more sensor
configurations are close to the maximum welfare. Hence, con-
vergence times for both algorithms decrease as nw increases.

This sensor-target assignment problem does not display
worst-case convergence times with respect to the number
of agents for either algorithm. However, it demonstrates
a situation where our modification can have an advantage
over standard log-linear learning. In log-linear learning, the
probability that the strong sensor will update next decreases
significantly as the number of agents grows. In modified log-
linear learning this probability remains fixed. This property is
desirable for this particular sensor-target assignment problem,
since the single strong sensor contributes significantly to the
total system welfare.

V. CONCLUSION

We have extended the results of [22] to define dynamics
for a class of semi-anonymous potential games whose player
utility functions may be written as functions of aggregate
behavior within each population. For games with a fixed
number of actions and a fixed number of populations, the
time it takes to come arbitrarily close to a potential function
maximizer is linear in the number of players. This convergence
time remains linear in the initial number of players even when
players are permitted to enter and exit the game, provided they
do so at a sufficiently slow rate.
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APPENDIX

A. Markov chain preliminaries

A continuous time Markov chain, {Zt}t≥0, over a finite
state space Ω may be written in terms of a corresponding
discrete time chain with transition matrix M [21], where the
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distribution µ(t) over Ω evolves as:

µ(t) = µ(0)et(M−I) = µ(0)e−t
∞∑
k=0

tkMk

k!
, t ≥ 0 (27)

where we refer to M as the kernel of the process Zt and
µ(0) ∈ ∆(Ω) is the initial distribution. The following defi-
nitions and theorems are taken from [21], [22]. Let µ, ν be
measures on the finite state space Ω. Total variation distance
is defined as

‖µ− ν‖TV :=
1
2

∑
x∈Ω

|µx − νx|. (28)

and
D(µ : ν) :=

∑
x∈Ω

µx log
µx
νx

(29)

is defined to be the relative entropy between µ and ν. The total
variation distance between two distributions can be bounded
using the relative entropy:

‖µ− ν‖TV ≤
√
D(µ : ν)

2
(30)

For a continuous time Markov chain with kernel M and
stationary distribution π, the distribution µ(t) obeys

D(µ(t) : π) ≤ e−4tρ(M)D(µ(0) : π), t ≥ 0 (31)

where ρ(M) is the Sobolev constant of M , defined by

ρ(M) := inf
f :Ω→R :
L(f)6=0

E(f, f)
L(f)

(32)

with

E(f, f) :=
1
2

∑
x,y∈Ω

(f(x)− f(y))2M(x, y)πx (33)

L(f) := Eπ log
f2

Eπf2
. (34)

Here Eπ denotes the expectation with respect to stationary
distribution π. For a Markov chain with initial distribution
µ(0) and stationary distribution π, the total variation and
relative entropy mixing times are

TTV (ε) := min
t
{‖µ(t)− π‖ ≤ ε} (35)

TD(ε) := min
t
{D(µ(t) : π) ≤ ε} (36)

respectively. From [21], Corollary 2.6 and Remark 2.11,

TD(ε) ≤ 1
4ρ(M)

(
log log

1
πmin

+ log
1
ε

)
,

where πmin := minx∈Ω πx. Applying (30),

TTV (ε) ≤ TD(2ε2)

≤ 1

4ρ(M)

„
log log

1

πmin
+ 2 log

1

ε

«
. (37)

Hence, a lower bound on the Sobolev constant yields an upper
bound on the mixing time for the Markov chain.

B. Notation and Problem Formulation: Stationary Semi-
Anonymous Potential Games

The following Markov chain, M , over state space X is
the kernel of the continuous time modified log-linear learning
process for stationary semi anonymous potential games. Define
nj := |Nj | to be the size of population j, define sj := |Āj |,
and let σ :=

∑m
j=1 sj . Let ekj ∈ Rsj be the kth standard basis

vector of length sj for k ∈ {1, . . . , sj}. Finally, let

x = (xj ,x−j) = (x1, x2, . . . , xm) ∈ X,

where xj = (x1
j , x

2
j , . . . , x

sj

j ) represents the proportion of
players choosing each action within population j’s action set.
The state transitions according to:
• Choose a population Nj ∈ {N1, N2, . . . , Nm} with proba-
bility sj/σ.
• Choose an action ākj ∈ {ā1

j , ā
2
j , . . . , ā

sj

j } = Āj with
probability 1/sj .
• If xkj > 0, i.e., at least one player from population j is
playing action ākj , choose p ∈ {p′ ∈ Nj : āp′ = ākj }
uniformly at random to update according to (7). That is,
transition to

(
xj + 1

n (e`j − ekj ), x−j
)

with probability

eβφ(xj+ 1
n (e`

j−e
k
j ),x−j)∑sj

t=1 e
βφ(xj+ 1

n (e`
j−ek

j ),x−j)

for each ` ∈ {1, 2, . . . , sj}. 9

This defines transition probabilities in M for transitions
from state x = (xj , x−j) ∈ X to a state of the form
y =

(
xj + 1

n (e`j − ekj ), x−j
)
∈ X in which a player from

population Nj updates his action, so that

M(x, y) =
eβφ(xj+ 1

n (e`
j−e

k
j ),x−j)

σ
∑sj

t=1 e
βφ(xj+ 1

n (et
j−ek

j ),x−j)
(38)

For a transition of any other form, M(x, y) = 0. Applying
(27) to the chain with kernel M and global clock rate ασn,
modified log-linear learning evolves as

µ(t) = µ(0)eασnt(M−I). (39)

Notation summary for stationary semi-anonymous potential
games: Let G = {N, {Ai}, {Ui}} be a stationary semi-
anonymous potential game. The following summarizes the
notation corresponding to game G.
• X - aggregate state space corresponding to the game G
• φ : X → R - the potential function corresponding to

game G
• M - probability transition kernel for the modified log-

linear learning process
• α - design parameter for modified log-linear learning

which may be used to adjust the global update rate

9Agents’ update rates are the only difference between our algorithm,
standard log-linear learning, and the log-linear learning variant of [22]. In
standard log-linear learning, players have uniform, constant clock rates. In our
variant and the variant of [22], agents’ update rates vary with the state. For
the algorithm in [22], agent i’s update rate is αn/ z̃i(t), where z̃i(t) is the
total number of players selecting the same action as agent i. The discrete time
kernel of this process is as follows [22]: (1) Select an action ai ∈ ∪i∈NAi
uniformly at random. (2) Select a player who is currently playing action ai
uniformly at random. This player updates its action according to (7). The two
algorithms differ when at least two populations have overlapping action sets.
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• µ(t) = µ(0)eαnt(M−I) - distribution over state space
X at time t when beginning with distribution µ(0) and
following the modified log-linear learning process

• Nj - the jth population
• nj := |Nj | - the size of the jth population
• Āj - action set for agents belonging to population Nj
• ākj - the kth action in population Nj’s action set
• s := | ∪mj=1 Aj | - size of the union of all populations’

action sets
• sj := |Āj | - size of population Nj’s action set
• ekj ∈ Rsj - kth standard basis vector of length sj
• σ :=

∑m
j=1 sj - sum of sizes of each population’s action

set
• π - stationary distribution corresponding to the modified

log-linear learning process for game G.
• (xj , x−j) = (x1, x2, . . . , xm) ∈ X , a state in the

aggregate state space, where xj = (x1
j , x

2
j , . . . , x

sj

j ).

C. Proof of Theorem 1

We require two supporting lemmas to prove Theorem 1.
The first establishes the stationary distribution for modified
log-linear learning as a function of β and characterizes how
large β must be so the expected value of the potential function
is within ε/2 of maximum. The second upper bounds the
mixing time to within ε/2 of the stationary distribution for
the modified log-linear learning process.

Lemma 1. For the stationary semi-anonymous potential game
G = (N,Ai, Ui) with state space X and potential function
φ : X → [0, 1], the stationary distribution for modified log-
linear learning is

πx ∝ eβφ(x), x ∈ X (40)

Moreover, if condition (i) of Theorem 1 is satisfied and β is
sufficiently large as in (8), then

Eπ[φ(x)] ≥ max
x∈X

φ(x)− ε/2. (41)

Proof: The form of the stationary distribution follows from
standard reversibility arguments, using (38) and (40).

For the second part of the proof, define the following:

Cβ :=
X
x∈X

eβφ(x),

x? := arg max
x∈X

φ(x)

B(x?, δ) := {x ∈ X : ‖x− x?‖1 ≤ δ}

where δ ∈ [0, 1] is a constant which we will specify later.
Because π is of exponential form with normalization factor
Cβ , the derivative of logCβ with respect to β is Eπ[φ(x)].
Moreover, it follows from (40) that Eπ[φ(x)] is monotonically
increasing in β, so we may proceed as follows:

Eπ[φ(x)] ≥ 1
β

(logCβ − logC0)

= φ(x?) +
1
β

log
∑
x∈X e

β(φ(x)−φ(x?))

|X|
(a)

≥ φ(x?) +
1
β

log

∑
x∈B(x?,δ) e

−βδλ

|X|

= φ(x?) +
1
β

log
|B(x?, δ)|e−βδλ

|X|

= φ(x?)− δλ+
1
β

log
(
|B(x?, δ)|
|X|

)
where (a) is from the fact that φ is λ-Lipschitz and the
definition of B(x?, δ). Using intermediate results in the proof
of Lemma 6 of [22], |B(x?, δ)| and |X| are bounded as:

|B(x?, δ)| ≥
m∏
i=1

(
δ(ni + 1)

2msi

)si−1

, and (42)

|X| ≤
m∏
i=1

(ni + 1)si−1. (43)

Now,

Eπ[φ(x)] ≥ φ(x?)− δλ+
1
β

log
(
|B(x?, δ)|
|X|

)

≥ φ(x?)− δλ+
1
β

log


∏m
i=1

(
δ(ni+1)

2msi

)si−1

∏m
i=1(ni + 1)si−1


= φ(x?)− δλ+

1
β

log
m∏
i=1

(
δ

2msi

)si−1

≥ φ(x?)− δλ+
m(s− 1)

β
log
(

δ

2ms

)
Consider two cases: (i) λ ≤ ε/4, and (ii) λ > ε/4. For case
(i), choose δ = 1 and let β ≥ 4m(s−1)

ε log 2ms. Then,

Eπ[φ(x)] ≥ φ(x?)− δλ+
m(s− 1)

β
log
(

δ

2ms

)
≥ φ(x?)− ε/4− m(s− 1)

β
log 2ms

≥ φ(x?)− ε/4− εm(s− 1)
4m(s− 1) log 2ms

log 2ms

= φ(x?)− ε/2

For case (ii), note that λ > ε/4 =⇒ δ = ε/4λ < 1 so we
may choose δ = ε/4λ. Let β ≥ 4m(s−1)

ε log
(

8λms
ε

)
. Then

Eπ[φ(x)] ≥ φ(x?)− δλ+
m(s− 1)

β
log

„
δ

2ms

«
= φ(x?)− ε/4 +

m(s− 1)

β
log
“ ε

8λms

”
= φ(x?)− ε/4− m(s− 1)

β
log

„
8λms

ε

«
≥ φ(x?)− ε/4− εm(s− 1)

4m(s− 1) log
`

8λms
ε

´ log

„
8λms

ε

«
= φ(x?)− ε/2

as desired.

Lemma 2. For the Markov chain defined by modified log-
linear learning with kernel M and stationary distribution
π, if the number of players within each population satisfies
condition (ii) of Theorem 1, and t is sufficiently large as in
(10), then

‖µ(t)− π‖TV ≤ ε/2. (44)
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Proof: We begin by establishing a lower bound on the Sobolev
constant for the Markov chain, M . We claim that, for the
Markov chain M defined in Appendix B, if φ : X → [0, 1]
and m+

∑m
i=1 n

2
i ≥ σ, then

ρ(M) ≥ e−3β

c1m(m(s− 1))!2n2
(45)

for some constant c1 which depends only on s. Then, from
(37), a lower bound on the Sobolev constant yields an upper
bound on the mixing time for the chain M .

Using the technique of [22], we compare the Sobolev
constants for the chain M and a similar random walk on a
convex set. The primary difference is that our proof accounts
for dependencies on the number of populations, m, whereas
theirs considers only the m = 1 case. As a result, our state
space is necessarily larger. We accomplish this proof in four
steps. In step 1, we define M? to be the Markov chain M
with β = 0, and establish the bound ρ(M) ≥ e−3βρ(M?).
In step 2, we define a third Markov chain, M†, and establish
the bound ρ(M?) ≥ 1

sρ(M†). Then, in step 3, we establish a
lower bound on the Sobolev constant of M†. Finally, in step
4, we combine the results of the first three steps to establish
(45). We now prove each step in detail.
Step 1, M to M?: Let M? be the Markov chain M with
β = 0, and let π? be its stationary distribution. In M? an
updating agent chooses his next action uniformly at random.
Per Equation (40) with β = 0, the stationary distribution π?

of M? is the uniform distribution. Let x, y ∈ X. We bound
πx/π

?
x and M(x, y)/M?(x, y) in order to use Corollary 3.15

in [21]:

πx
π?x

=
eβφ(x)∑
y∈X e

βφ(y)
·
∑
y∈X e

0

e0
=
|X|eβφ(x)∑
y∈X e

βφ(y)

Since φ(x) ∈ [0, 1] for all x ∈ X, this implies

e−β ≤ πx
π?x
≤ eβ (46)

Similarly, for y = (xj + 1
n (ekj − e`j), x−j),

M(x, y)
M?(x, y)

=
sje

βφ(y)∑sj

r=1 e
βφ(xj+ 1

n (ek
i−er

i ),x−j)

Since φ(x) ∈ [0, 1] for all x ∈ X, for any x, y ∈ X of the
above form,

e−β ≤ M(x, y)
M?(x, y)

≤ eβ . (47)

For a transition to any y not of the form above, M(x, y) =
M?(x, y) = 0. Using this fact and Equations (46) and (47),
we apply Corollary 3.15 in [21]:

ρ(M) ≥ e−3βρ(M?). (48)

Step 2, M? to M†: Consider the Markov chain M† on X ,
where transitions from state x to y occur as follows:
• Choose a population Nj with probability sj/σ
• Choose k ∈ {1, . . . , sj − 1} and choose κ ∈ {−1, 1}, each
uniformly at random.
• If κ = −1 and xkj > 0, then y = (xj+ 1

n (esj

j −ekj ), x−k).
• If κ = 1 and xsj

j > 0, then y = (xj + 1
n (ekj − e

sj

j ), x−j).

Since M†(x, y) = M†(y, x) for any x, y ∈ X , M† is
reversible with the uniform distribution over X . Hence the
stationary distribution is uniform, and π† = π?.

For a transition x to y in which an agent from population
Nj changes his action, M?(x, y) ≥ 1

sj
M†(x, y), implying

M?(x, y) ≥ 1
s
M†(x, y), ∀x, y ∈ X (49)

since s ≥ sj , ∀i ∈ {1, . . . ,m}. Using (49) and the fact that
π? = π†, we apply Corollary 3.15 from [21]:

ρ(M?) ≥ 1
s
ρ(M†) (50)

Step 3, M† to a random walk: The following random walk
on

C =

8<:(z1, . . . , zm) ∈ Zσ−m+ : zj ∈ Zsj−1

+ ,

sj−1X
k=1

zkj ≤ nj , ∀j

9=;
is equivalent to M†. Transition from x→ y in C as follows:

• Choose j ∈ [σ − m] and κ ∈ {−1, 1}, each uniformly at
random
• y =

{
x+ κej if x+ κej ∈ C
x otherwise .

The stationary distribution of this random walk is uniform.
We lower bound the Sobolev constant, ρ(M†), which, using
the above steps, lower bounds ρ(M) and hence upper bounds
the mixing time of our algorithm.

Let g : C → R be an arbitrary function. To lower bound
ρ(M†), we will lower bound E(g, g) and upper bound L(g).
The ratio of these two bounds in turn lower bounds the ratio
E(g, g)/L(g); since g was chosen arbitrarily this also lower
bounds the Sobolev constant. We will use a theorem due to
[?] which applies to an extension of a function g : C → R to
a function defined over the convex hull of C; here we define
this extension.

Let K be the convex hull of C. Given g : C → R, we follow
the procedure of [?], [22] to extend g to a function gε : K →
R. For x ∈ C, let C(x) and C(x, ε) be the σ−m dimensional
cubes of center x and sides 1 and 1 − 2ε respectively. For
sufficiently small ε > 0 and z ∈ C(x), define gε : K → R
by:

gε(z) :=
{
g(x) if z ∈ C(x, ε)
(1+η(z))g(x)+(1−η(z))g(y)

2 otherwise

where y ∈ C is a point such that D := C(x) ∩ C(y) is
the closest face of C(x) to z (if more than one y satisfy
this condition, one such point may be chosen arbitrarily), and
η := dist(z,D)

ε ∈ [0, 1). The dist function represents standard
Euclidean distance in Rσ−m.

Define

Iε :=

Z
K

˛̨
∇gε(z)

˛̨2
dz (51)

Jε :=

Z
K

gε(z)
2 log

gε(z)
2 vol(K)R

K
gε(y)2dy

dz. (52)

Applying Theorem 2 of [?] for K ∈ Rσ−m with diameter
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√∑m
i=1 n

2
i , if m+

∑m
i=1 n

2
i ≥ σ,

εIε
Jε
≥ 1
A
∑m
i=1 n

2
i

. (53)

We lower bound E(g, g) in terms of εIε and then upper bound
L(g) in terms of Jε to obtain a lower bound on their ratio
with Equation (53). The desired lower bound on the Sobolev
constant follows.

Using similar techniques to [22], we lower bound E(g, g)
in terms of εIε as

Iε ≤
|C|(σ −m)

ε
E(g, g) +O(1).

Then, εIε ≤ε→0 |C|(σ −m)E(g, g), and hence

E(g, g) ≥
ε→0

εIε
|C|(σ −m)

. (54)

Again, using similar techniques as [22], we bound Jε as

Jε
vol(K)

≥ |C|
22(σ−m) vol(K)(σ −m)!2

L(f).

Then

L(g) ≤
ε→0

22(σ−m)(σ −m)!2

|C| Jε. (55)

Step 4, Combining inequalities: Using inequalities (53), (54),
and (55),

E(f, f)

L(f)
≥ 1

22(σ−m)A(σ −m)(σ −m)!2
Pm
i=1 n

2
i

, (56)

∀f : C → R. Therefore,

ρ(M†) = min
f :C→R

E(f, f)

L(f)

≥ 1

22(σ−m)A(σ −m)(σ −m)!2
Pm
i=1 n

2
i

(57)

Combining equations (48), (50), and (57)

ρ(M) ≥ e−3β

22msc1m2(m(s− 1))!2n2

where c1 is a constant depending only on s.
From here, Lemma 2 follows by applying Equation (37) in

a similar manner as the proof of Equation (23) in [22]. The
main difference is that the size of the state space is bounded
as |X| ≤

∏m
i=1(ni + 1)si+1 due to the potential for multiple

populations.
Combining Lemmas 1 and 2 results in a bound on the time it

takes for the expected potential to be within ε of the maximum,
provided β is sufficiently large. The lemmas and method of
proof for Theorem 1 follow the structure of the supporting
lemmas and proof for Theorem 3 in [22]. The main differences
have arisen due to the facts that i) our analysis considers the
multi-population case, so the size of our state space cannot
be reduced as significantly as in the single population case
of [22], and ii) update rates in our algorithm depend on
behavior within each agent’s own population, instead of on
global behavior.

Proof of Theorem 1:
From Lemma 1, if condition (i) of Theorem 1 is satisfied and β
is sufficiently large as in (8), then Eπ[φ(x)] ≥ maxx∈X φ(x)−
ε/2. From Lemma 2, if condition (ii) of Theorem 1 is satisfied,

and t is sufficiently large as in (10), then ‖µ(t)−π‖TV ≤ ε/2.
Then

E[φ(a(t)|X)] = Eµ(t)[φ(x)]
≥ Eπ[φ(x)]− ‖µ(t)− π‖TV ·max

x∈X
φ(x)

(a)

≥ max
x∈X

φ(x)− ε

where (a) follows from (41), (44), and the fact that φ(x) ∈
[0, 1].
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