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This paper discusses implementation and compares results from three different path
planning methods for guidance through a cluttered environment using vision-based simul-
taneous localization and mapping (SLAM). The planners are implemented using sequential
quadratic programming (SQP), a genetic algorithm, and a rapidly-exploring random tree
(RRT). Various planning horizon lengths are explored. The planners are compared for
resulting path length from a start to a goal location and back, obstacle avoidance, and com-
putation time. A short planning horizon SQP method resulted in shortest path lengths,
a medium horizon genetic algorithm produced the best obstacle avoiding trajectories, and
the short horizon SQP planner required the least planning time.

I. Introduction

Motion planning in an unknown environment has applications for a wide variety of unmanned vehicles.
In particular, unmanned aircraft systems (UAS) operating in cluttered environments such as forests or urban
areas must sense obstacles and plan paths which avoid collision to safely arrive at a goal location.7 Sensing,
estimation, and planning tasks are often constrained by limited computational resources when operating
small unmanned aircraft (UA). Vision-based simultaneous localization and mapping (SLAM) may be used
for unmanned systems constrained by limited payload capacity and computational capabilities.9 A path
planner which can use SLAM estimates of vehicle and obstacle states to quickly produce feasible planned
trajectories is desired.

In this scenario, the aircraft discovers obstacles by taking bearing measurements as it moves toward the
goal. Because new obstacles are frequently discovered, and because obstacle observability from bearings-
only vision measurements depends on UA motion relative to obstacles, planned aircraft trajectories must
account for uncertainty in relative obstacle positions and be frequently updated based on newly discovered
obstacles or changing position estimates for known obstacles. Receding horizon control (RHC) methods are
well-suited for such applications that exhibit dynamic observability.3–5 In RHC, a partial plan toward the
goal is developed and executed for a limited finite planning horizon. Upon completing a portion of that plan,
a new partial plan is developed, and this process continues until the goal has been reached. Alternately, at
each planning step a full trajectory to the goal may be determined. In either case, when newly discovered
obstacles or refined aircraft and obstacle state estimates render the current path infeasible, a new safe
trajectory should be generated.

The path planning problem for UA performing vision based SLAM has been addressed in Refs. 4,5 with
dynamically adapted planning horizon lengths based on information rate of change. In that work, sequential
quadratic programming (SQP) was used to plan aircraft trajectories. Alternatively, an evolutionary algo-
rithm for UA path planning which incorporates a replanning scheme based on updated information has been
developed and evaluated.13 Further, rapidly-exploring random trees (RRT) have been used to successfully
develop plans online for autonomous land vehicle movement.8

In this study, the vision based SLAM and path planning framework developed in Refs. 4, 5 is extended
to examine three different path planning methods for autonomous travel through a cluttered environment.
The three path planning methods are compared for their performance. Performance is evaluated by obstacle
∗This material is based upon work supported by the National Science Foundation under Grant No. 1116010
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avoidance and total path length. Further, computation times for each method are discussed. The three
trajectory generation methods analyzed seek optimal control sequences which minimize distance to the goal
and avoid obstacles using SQP, a genetic algorithm, and an RRT-based scheme. The SQP planner is based
on the framework of Refs. 4,5, and the RRT based method loosely follows the closed-loop planner presented
in Ref. 8. Both the SQP and genetic algorithm planners generate trajectories in an RHC fashion, whereas
the RRT based method determines a full trajectory to the goal at each planning step.

This paper is organized as follows: Section II introduces notation, describes system dynamics, and defines
the objective of the planners, Section III discusses each implemented method in further detail, Section IV
presents the results of the three methods, and Section V discusses those results.

II. Problem Statement

The preliminaries and problem statement presented here follow the setup described in Refs. 4, 5; this
implementation and analysis builds from the methods presented there.

The UA must simultaneously sense obstacles, estimate their positions, and travel through a cluttered
environment from a start to a goal location and back. Aircraft and obstacle positions are assumed to be
two dimensional, so that pTk = [xk yk] is the aircraft position in the inertial frame at time k and ψk is
its heading. Additional aircraft states include an accelerometer scale factor error a and accelerometer and
rate gyro biases b. The ith obstacle’s position in the inertial frame is x(i)

o = [x(i)
o y

(i)
o ]T . Aircraft speed is

held constant, this speed and the aircraft heading angle, ψ, fully describes its velocity vector. The full state
vector is given by

x =

[
xa
xo

]
(1)

where
xa =

[
x y ψ aT bT

]T
, x0 =

[
x

(1)
o y

(1)
o x

(2)
o y

(2)
o · · · x

(n)
o y

(n)
o

]
, (2)

Aircraft speed, s, is assumed constant in this work, so that the UA is controlled solely by its turn rate,
u, which is limited to |u| ≤ ωmax. Aircraft position and heading evolve according the following (exact)
discretized unicycle kinematic model:xk+1

yk+1

ψk+1

 = f(xa,k, uk) =

xk + s · Ts sinc(γ) cos(ψk + γ)
yk + s · Ts sinc(γ) sin(ψk + γ)

ψk + uk · Ts

 , (3)

where Ts is the sample time, γ = 0.5 · u · Ts, and sinc(γ) is the sine cardinal function.
The estimator described in Ref. 9 is used for this study to process IMU and bearings only camera

measurements, which are functions of the system state and aircraft control input,

zk =

[
zimu,k

zcam,k

]
=

[
himu, k(xk, uk) + vk

hcam, k(xk, uk) + wk

]
(4)

where vk and wk are zero mean, spacially uncorrelated, white Gaussian measurement noise. The mea-
surements are used to to obtain aircraft state estimates x̂a,k, obstacle position estimates x̂o,k, and their
covariances Paa,k, Poo,k, and Pao,k. Estimator dynamics evolve according to

x̂k+1 =

[
x̂a,k+1

x̂o,k+1

]
= gstate(x̂k, uk, zk+1) (5)

Pk+1 =

[
Paa,k+1 Pao,k+1

Pao,k+1 Poo,k+1

]
= gcov(Pk, x̂k, uk, zk+1). (6)

The functions gstate and gcov update the state and covariance estimates based on new measurements, and are
covered in further detail in Ref. 9. Estimation errors are assumed to be zero mean and normally distributed.

A block diagram of the guidance, navigation, and control framework for this system is shown in Figure
1. This paper focuses on the trajectory generation element, which is highlighted in green. Three different
path planing methods are compared while all other elements of this framework are kept fixed.
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Figure 1: Guidance, Navigation, and Control System

A. Objective

The objective of this work is to find the sequence of control inputs which minimize the distance the UA
must travel to move from a start to a goal location and back through a cluttered environment. The UA
trajectory must be collision free. Since obstacle and aircraft positions are uncertain, collision avoidance is
initially formulated as a chance-constraint on aircraft position. This stochastic constraint is reformulated as
a set of deterministic constraints on the relative position between the aircraft and each obstacle.

Aircraft guidance is achieved using a receding horizon approach. At time k an open loop optimal control
problem is solved over a finite time horizon of length Th > 0. The resulting path is followed over the control
horizon Tc ≤ Th and the process is repeated at time k + Tc. Thus, the problem of interest here is:

Problem 1 (Chance-Constrained Receding Horizon Optimization)

minimize Jrhc(uk:k+Th−1) (7)
subject to xk given (8)

xj+1 = f(xj , uj), ∀j ∈ [k, · · · , k + Th − 1] (9)

Prob(‖pj − x(i)
o ‖ ≥ rsafe) ≥ 1− ε, ∀i,∀j (10)

The full sequence of turn rate commands is given by uk:k+Th−1 = [uk, uk+1, · · · , uk+Th−1]T and Jrhc denotes
the objective function. The safety radius, rsafe is a predetermined obstacle standoff distance which accounts
for both obstacle and aircraft sizes. The parameter 1 > ε > 0 is the highest permitted collision probability
at any given time. Although a collision probability of zero is clearly desired, uncertainty in obstacle positions
dictates that a nonzero probabilistic constraint be set.

Because obstacle position estimate errors are assumed to be zero mean and normally distributed, an
obstacle with position estimate x̂(i)

o and information matrix I−1
i = P(i)

o , has probability

Prob
(
x(i)
o ∈ A

)
=

√
|Ii|
2π

∫
A

e−
1
2 (p−x̂(i)

o )T I(i)
o (p−x̂(i)

o )dA (11)

of being in a given area A. By letting Av,k be the circle of radius rsafe surrounding the aircraft at time k, Eq.

(10) is satisfied when Prob
(
x(i)
o ∈ Av,k

)
< ε ∀i,∀k. However, because the integral of Eq. (11) does not

have a general closed form solution, computing this probability for an arbitrary area A ∈ R2 is unrealistic
for an online planning problem. Instead, a standoff region based on the probability ellipse defined by each
obstacle’s position and covariance estimates will be used to conservatively guarantee that Eq. (10) is met.
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Consider the weighted distance metric between two points p1 and p2

‖p1 − p2‖2M : = (p1 − p2)T M (p1 − p2) (12)

where M is a weighting matrix and x is a random variable describing the true obstacle position. The set of
points p that satisfy the equation ‖p − p0‖2M = r form an ellipse centered at position p0 with major and
minor ellipses defined by M . When M = Ii and p0 = x̂(i)

o , Eq. 12 defines the Mahalanobis distance between
the obstacle position estimate and position p, and its level sets correspond to level sets of the probability
density function of Eq. (11). Then, if p ∼ N2

(
x̂(i)
o , P

(i)
o

)
,

‖p− x̂(i)
o ‖2Ii

∼ χ2
2 (13)

so that the probability that the obstacle falls within the ellipse defined by r = χ2
2,ε is given by

Prob
{
‖p− x̂(i)

o ‖2Ii
≤ χ2

2,ε

}
= 1− ε (14)

where χ2
2,ε is inverse of the chi-square cumulative distribution function with two degrees of freedom and

probability 1− ε.15 Hence, requiring that

‖pk − x̂(i)
o,k‖

2
Ii,k
≥ χ2

2,ε, ∀k, ∀i (15)

or equivalently
cε(pk, x̂

(i)
o,k, Ii,k) := χ2

2,ε − ‖pk − x̂(i)
o,k‖

2
Ii,k
≤ 0, ∀k, ∀i (16)

where pk is the aircraft position at time k, conservatively achieves the desired probability of 1− ε that the
aircraft will not collide at time k when rsafe = 0. Because the aircraft and obstacles have some physical size,
the ellipse must then be expanded by rsafe to ensure that the desired constraint is met. In this case define

O−1
i = Ui(Σi + rsafe · I2)V Ti (17)

where P (i)
o = UiΣiV Ti is the singular value decomposition of the covariance matrix and I2 is the identity

matrix.
Replacing the chance-constraint with the deterministic one leads to the optimization problem of interest:

Problem 2 (Deterministic Receding Horizon Optimization)

minimize Jrhc(uk:k+Th−1) (18)
subject to xk given (19)

xj+1 = f(xj , uj), ∀j ∈ [k, · · · , k + Th − 1] (20)

cε(pj , x̂
(i)
o,j , Oi,j) ≤ 0, ∀i,∀j (21)

III. Methods

The three methods compared for trajectory generation in this study are a sequential quadratic program
(SQP),4 a genetic algorithm, and a closed-loop rapidly exploring random tree (RRT) method.8 The first
two methods use an RHC approach to generate trajectories for a fixed horizon, Th, whereas the RRT based
optimization scheme generates a full trajectory to the goal for each planning step based only on obstacles
that can be reached over the time horizon Th.

A. Planning Using Sequential Quadratic Programming

The first method uses an SQP optimizer to generate the control sequences uk:k+Th−1. SQP is an iterative
gradient based optimization method described in further detail by Nocedal and Wright,11 and is executed
here using the fmincon function in Matlab. The optimizer is initialized by first computing the value of the
objective function for a collection of trajectories which contains 10 predetermined control sequences and
500 randomly generated allowable control sequences. The set of predetermined control sequences contains
the trajectory of the previous plan, a straight trajectory, and various trajectories which combine straight
segments with maximum turn rate segments. A characteristic collection of these predetermined and random
trajectories used for optimizer initialization is shown in Figure 2. The lowest cost trajectory from this
collection is provided to the optimizer as an initial guess.
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(a) 10 Predetermined Trajectories
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(b) 500 Randomly Chosen Trajectories

Figure 2: Representative collection of trajectories used to initialize the SQP planning method: the lowest
cost of these will be given to the optimizer as an initial guess.

Optimization Objective

At each planning step k, SQP seeks the control sequence, uk:k+Th−1 which minimizes the objective function

J
(SQP)
rhc (uk:k+Th−1) = Jnav(uk:k+Th−1|x̂k) + J

(SQP )
safe (uk:k+Th−1|x̂k) (22)

where x̂k is the estimate of the aircraft state and obstacle positions at time step ka. Minimizing the navigation
cost, Jnav encourages the aircraft to take a short path to the goal. The safety cost Jsafe uses the barrier
function method to transform the collision avoidance constraints into part of the objective function.

The navigation and safety cost functions follow those established in reference.4

Navigation Cost

The navigation cost consists of a summed quadratic cost function for the planned portion of the trajectory
and an estimate of the cost to go for the remainder

Jnav(uk:k+Th−1|x̂k) =
k+Th∑
j=k+1

‖p̂j − pgoal‖2 + J̃nav(x̂k+Th
) (23)

where p̂j is the position component of the aircraft state, and pgoal is the goal location. Predicted positions
p̂j for j = [k + 1, · · · , k + Th] are computed using Eq. (3). The cost to go estimate is included to improve
the stability of the RHC approach. It is given by J̃nav(x̂k+Th

), and assumes the aircraft moves in a straight
line toward the goal from the final position in the trajectory over the distance

d =
⌈
‖p̂k+Th

− pgoal‖
∆d

⌉
∆d (24)

which is the smallest distance greater than ‖p̂k+Th
− pgoal‖ that can be traveled in an integer number of

time steps, and ∆d = s · Ts is the distance traveled in one time step, Ts, with aircraft speed s. The number
aWe use the notation J(uk:k+Th−1|x̂k) as reminder that the state estimate at time k is needed by the optimizer.
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of time steps along this path is Nnav = d/∆d so that the cost to go from time k + Th can be approximated:

J̃nav(x̂k+Th
) = α

k+Th+Nnav∑
j=k+Th

‖p̂j − pgoal‖2 (25)

= α

Nnav−1∑
j=0

((Nnav − j)∆d)2 (26)

= α∆d2
Nnav∑
j=1

j2 (27)

= α∆d2 · Nnav(Nnav + 1)(2Nnav + 1)
6

(28)

where α ≥ 1 is a scaling factor which may be used to tune the cost to go estimate. In this work α = 1.

Safety Cost

For the SQP method, the collision avoidance constraint discussed in Section A is accounted for by using a
barrier function to apply a large penalty in the objective function to close obstacle approaches. This penalty
is given by

J
(SQP )
safe (uk:k+Th−1|x̂k) = Wsafe

k+Th∑
j=k+1

No∑
i=1

b
(
cε(pj , x̂

(i)
o,j , Oi,j), 0

)
(29)

where b(x, r) is the barrier function

b(x, r) =

{
0 x ≤ r
(x− r) x > r

, (30)

and No is the number of obstacles that have been detected at time step k. The weighting parameter, Wsafe,
sets the slope of the barrier function and is set to 1010 for this study.

Planning

For each simulation with the SQP planner, the planning horizon is set at a fixed value, Th. Three different
length planning horizons are compared and described in Section IV. Each time a new obstacle comes into
view, the current planned trajectory is checked for safety by computing Jsafe. When either the current
trajectory is found to be unsafe, i.e., Jsafe > 0, or the control horizon 0 < Tc ≤ Th is reached, a replanning
step is triggered and a new trajectory is generated. The control horizon is set as a fixed fraction of the
planning horizon.

B. Genetic Algorithm Planning Method

Genetic algorithms are useful for approximating optimal solutions to problems similar to this one, in which
local optima exist that may trap a gradient following optimization scheme. The theory behind genetic
algorithms is further described by Sivanandam.14

The genetic algorithm implemented for this work begins with an initial population of size n, which
is sorted according to cost. Each member of the population is a control sequence of length Th. At each
generation, selection is performed using a slotting scheme: the lowest cost control sequence receives n slots
on the list, the next lowest cost control sequence receives n − 1 slots, and so on. In the combination and
mutation phase, each new control sequence is formed by either combining two randomly chosen members from
the slotted list, or combining a randomly chosen control sequence with a randomly generated one. The first
type of combination is performed with 80% probability, and the second is performed with 20% probability;
this is repeated until the next generation contains n members. Two control sequences are combined using a
single point crossover with 50% probability, or by a linear combination of the two parent control sequences
with 50% probability. Throughout all generations, the lowest cost solution produced so far is saved. When
a stopping criterion is reached, this lowest cost control sequence is returned.
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The initial population is seeded with one straight trajectory, i.e., uk+i = 0 for i = [0, · · · , Th − 1], a
trajectory with all right turns at the maximum rate, i.e., uk+i = −ωmax for i = [0, · · · , Th − 1], and a
trajectory with all left turns at the maximum rate, i.e., uk+i = ωmax for i = [0, · · · , Th − 1]. The remainder
of the initial population is filled by randomly generated allowable turn rate sequences. In this study, the
population size is set at n = 50. A representative initial population and generation of trajectories is shown
in Figure 3.
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(a) Genetic Algorithm Initial Population
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(b) Genetic Algorithm Generation

Figure 3: A representative initial population and generation generation from the genetic algorithm planning
method. The dark black trajectory denotes the best solution found so far.

Optimization Objective

The implemented genetic algorithm seeks the control sequence uk:k+Th−1 which minimizes the objective
function

J
(GA)
rhc (uk:k+Th−1|x̂k) = Jnav(uk:k+Th−1|x̂k) + J

(GA)
safe (uk:k+Th−1|x̂k). (31)

Here, the navigation cost function is the same as the one used for the SQP method, but the safety cost is
formulated differently to take advantage of the structure of the genetic algorithm.

Safety Cost

The safety cost is given by

J
(GA)
safe (uk:k+Th−1|x̂k) = Wsafe

k+Th∑
j=k+1

No∑
i=1

h
(
cε(pj , x̂

(i)
o,j , Oi,j), 0

)
(32)

where h(x, r) is the function

h(x, r) =

{
0 x ≤ r
1 + b(x, r) x > r

, (33)

and b(x, r) is the barrier function of Eq. (30). The safety weighting parameter is set such that Wsafe >> Jnav

for paths within the bounds of the simulated environment. Here, Wsafe = 1010. By formulating the safety cost
in this way, feasible and infeasible trajectories may be distinguished. A path violates the collision avoidance
constraint will have a cost larger than Wsafe and is marked infeasible. The barrier cost function, b, of Eq.
(30) is added because the aircraft occasionally must plan from a location too close to an obstacle due to
estimation errors; this is discussed in further detail below.

Stopping Criterion

For each planning cycle, the genetic algorithm continues until a stopping criterion is reached. Here, the
stopping criterion is achieved when the lowest cost trajectory satisfies Jrhc(uk:k+Th−1|x̂k) < Wsafe and either
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some predetermined number of generations have been generated, or some predetermined amount of time has
elapsed. The first condition ensures the trajectory is feasible, according to estimated aircraft and obstacle
positions. Occasionally, due to estimation errors, the aircraft must plan from a position that is too close
to an obstacle; in this situation a trajectory with cost less than Wsafe does not exist. For such situations,
a second time threshold is established; if the planner reaches this point and still has not found a feasible
trajectory, it returns the lowest cost trajectory found so far. The second term in the safety cost function of
Eq. (32) encourages the aircraft to move away from the obstacle it is close to when this situation occurs.

Planning

As for the SQP planner, the genetic algorithm planning horizon Th is set at a fixed value for each simulation,
and two different length planning horizons are compared. Each time a new obstacle comes into view, Jsafe is
recomputed for the current trajectory. A replan is triggered if the current trajectory is found to be unsafe,
or when the end of the control horizon Tc is reached.

C. RRT based Planning Method

The simulated RRT planning method loosely follows the Closed Loop RRT (CL-RRT) method described in
Ref. 8. This planner was developed by modifying open source RRT code developed by Karaman and Frazzoli6

which had been modified by Otte for speedup using multiple forests of random trees.12 For consistency with
the other two planning methods, this RRT-based method returns a plan in the form of an open loop sequence
of turn rate commands. The aircraft executes this control sequence, checking a fixed portion of the planned
trajectory for safety each time a previously undetected obstacle comes into camera range.

Expanding the tree

For this planner, a tree expansion method which simulates aircraft control replaces the standard RRT
expansion process.10 This controller simulating expansion algorithm is presented in Algorithm 1, and is a
modified version of the closed loop tree expansion algorithm.8 First, Dubins path length, not Euclidean
distance as in standard RRT expansion, is used to determine the nearest node in the tree to a sampled
state.8 Then, a controlled trajectory is simulated from the nearest node using the sampled state as the
reference input command. This path is checked for feasibility and if the simulated trajectory is obstacle free,
the sampled state is added to the tree as a reference command.

Objective function

The cost of a path segment between two nodes of a tree is given by its distance. Letting Xn1,n2 =
{xv,0,xv,1, . . . ,xv,K} be the aircraft trajectory connecting nodes n1 and n2, the segment’s cost is

J
(RRT)
path segment(X0:K) =

K∑
j=1

‖pv,j − pv,j−1‖. (34)

The cost of a full trajectory is the sum of the lengths of its segments. For trajectories which do not
fully extend to the goal, the cost to go is estimated by the Dubins path distance metric described below.
Otherwise, the cost to go is zero. In this implementation, the planner does not return a trajectory until a
full feasible path to the goal has been determined.

Distance Metric

Because the distance traveled from a node to a sampled state depends on the node’s heading and minimum
turn radius, a metric that approximates the distance along the controlled trajectory between the two states is
desired. Although the controller does not follow a Dubins path, the Dubins path length provides a estimate
which may be used to find the nearest node to a given sample, or to approximate the cost to go from a leaf
in the tree to the goal. Minimal length Dubins paths are discussed in detail in Ref. 2, and Ref. 8 provides
a formula for computing Dubins path lengths.
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Algorithm 1 RRT expansion

Sample a reference position, xsamp = [xsamp ysamp] .
Sample a state inside the goal region with some probability, q > 0.
Sort the nodes in the tree by their Dubins path length, l, from the sampled state. Let n1, n2, . . . , nk be
the ordered list of nodes from smallest to largest associated length, l, to the state s
for i = 1→ k do

Initialize xnext = xni
and pnext = [xni yni ]

T , where xni
= [xni yni ψni ]

T is the aircraft state
at node ni.
while ‖pnext − xsamp‖ < tol do

Update xcurr = xnext

Using xsamp as a reference waypoint, simulate the waypoint following controller at rate 1/Ts to obtain

the next aircraft state, xnext = [pTnext ψnext]
T

along the trajectory, Xn,s.
if the segment from pcurr to pnext is obstacle free then

Add xnext to Xn,s

else
break.

end if
end while
if the trajectory is obstacle free then

Add the final state of the simulated trajectory, xnext as a node in the tree, connected by an edge to
ni
Store the reference command pref = s as the input to the controller which resulted in the simulated
trajectory from ni to xnext.
if ni is not in the goal region then

Estimate the cost to go by its Dubins path length to the goal.
else

The cost to go from ni is 0.
end if
Break.

end if
end for

Obstacle Avoidance

Obstacle avoidance is performed by requiring that Eq. (21) is satisfied for every position in the trajectory
to a candidate node before adding it to the tree.

Aircraft Control

A simple waypoint following aircraft controller is implemented and described in Algorithm 2. This controller
is used in both simulating trajectories for adding nodes to the tree, and for producing full trajectory plans
in the form of turn rate command sequences. During flight toward a waypoint, if the angle ν between the
aircraft’s current heading and the heading to that waypoint is larger than a threshold angle, set here to π/4,
then the aircraft is commanded at maximum turn rate toward the waypoint. Otherwise, commanded turn
rate is proportional to the angle ν. This threshold angle was determined using heuristics; both larger and
smaller values often resulted in paths which did not converge to the desired waypoint.

When attempting to connect a sampled state xsamp to the tree, the controller is simulated from the node
in the tree with W = {xsamp}. After the RRT algorithm is complete, and the lowest cost path has been
found, the same aircraft controller is used to produce the desired planned turn rate sequence. In this case,
W is a sequence of waypoints that lead from the aircraft’s current location to the goal.

In this study, the distance tolerance tol before switching to the next waypoint is set to 10 m. At the goal
location, this tolerance is reduced to 4 m. An example of the RRT expansion and the resulting waypoint
following path from the start to the goal is show in Figure 4. For this example, a full set of exact obstacle
positions were given to the planner; in aircraft planning simulations, the planner instead uses estimated
positions of known obstacles to determine a trajectory. Nodes in the figure are waypoints which the aircraft
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Algorithm 2 Aircraft Control
Given the current aircraft state xcurr = [xcurr, ycurr, ψcurr]T and a list of waypoints to follow W =
{w1,w2, . . . ,wn}
Initialize the trajectory X = ∅.
for i = 1→ n do

while ‖pcurr −wi‖ < tol do
Compute the heading angle, γ, from xcurr to wi : γ = atan2(ywi − ycurr, xwi − xcurr).
Set ν = fmod(γ − ψcurr, 2π)
if 7π/4 > |ν| > π/4 then

Turn at ωmax toward wi

else
Turn at rate ωmax|ν|

π toward wi.
end if

end while
end for

controller uses as reference commands to fly a trajectory toward the goal.
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Figure 4: RRT Expansion and Waypoint Following

Execution

At each planning step this RRT-based planner produces a sequence of waypoints for the aircraft to follow from
its current state to the goal. A sequence of turn rate commands is then generated according to Algorithm
2. With each new vision measurement, a fixed portion of the current path is checked for safety as in Section
A. The entire trajectory is not checked, because as obstacles are discovered this would result in a high
replanning rate. In particular, the trajectory is checked over the control horizon only and a new plan is
initiated if J (SQP )

safe (uk:k+Tc
|x̂k) > 0, where the safety cost is given by Eq. (29). Otherwise, a new trajectory

is generated when a control horizon, Tc, is reached.
For comparison with other methods, a version of RHC is implemented using the RRT based method.

Each generated plan is a control sequence extending to the goal from the current location. However, the
set of obstacles O(RRT ) considered by the planner are only those obstacles that could be reached over the
planning horizon:

O(RRT ) = {Oi | ‖pk − x(i)
o ‖ ≤ Th ∗ s} (35)

When replanning, the new trajectory is not determined entirely from scratch; before randomly sampling
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states, an attempt is made to add waypoints from the previous best path to the tree. This takes advantage
of the fact that a portion of the previous trajectory may still be feasible, even if a later portion results in
collision with an obstacle.

IV. Simulation Results

A. Simulation Setup

One simulation consists of an out an back flight from a start to a goal location through a cluttered environ-
ment, as shown in Figures 5a - 5b. During the flight toward the goal, obstacles are discovered for the first
time. On the return trip, the vehicle retains knowledge of discovered obstacle position estimates, and may
further refine those estimates and use the prior knowledge for planning purposes. Simulation parameters are
given in Table 1.

Table 1: Simulation Parameters

Initial aircraft state x = [100 −100 0]
T

Goal location pgoal = [450 50]
T

Goal region 4 m circle surrounding the goal
Camera sensing range Rc = 100 m
Camera field of view FOV = 100◦

Aircraft speed s = 10 m/s
Planner sample rate Ts = 2 Hz

Vision measurement rate Tv = 2 Hz
IMU measurement rate TIMU = 20 Hz

Planning horizon Th = wplanRc

s

Control horizon Tc = 0.2 · Th s
Maximum turn rate ωmax = 1 rad

Obstacle safety radius rsafe = 4 m
Safety constraint parameter ε = 0.00001

Bearing measurement noise error standard deviation 0.01 rad

Accelerometer scale factor error standard deviations a = [0.001 m 0.001 m]
T

Accelerometer and rate gyro bias standard deviations, b [0.001 m 0.001 m 0.0004 rad]
T

Note that the planning sample time Ts is 2 Hz, but the simulation itself is integrated at the 20 Hz
IMU measurement rate. Uncertainty is introduced into the simulation with bearing measurement error,
accelerometer error, and gyro error. The aircraft must navigate through 500 obstacles at randomly generated
positions within a 500 m by 400 m region. Obstacle positions are generated once and then held fixed over
all simulations. For the SQP method and the genetic algorithm, short and medium RHC planning horizons,
and a three-step lookahead over a long control horizon are implemented. The three-step lookahead method
is further described in Ref 1. This method allows for a longer control horizon while taking advantage of
the lower computation time required to create a plan that simulates only the next three control steps to
determine each control rate command over a horizon of length Tc. The control horizon Tc for the SQP and
genetic algorithm methods is 20% of the short and medium planning horizons; a replan is triggered when the
end of the control horizon is reached, or when the current plan is found to be unsafe due to new or refined
obstacle location estimates. In the three-step lookahead method, a plan of length Tc is generated, where Tc
is a predetermined fixed control horizon length. A horizon length of 10 seconds corresponds a plan for the
amount of time it would take the aircraft to travel in a straight line at its current heading to the edge of its
camera range.

Fifty Monte Carlo simulations using each of the following methods for planning paths toward the goal
were performed:

11 of 19

American Institute of Aeronautics and Astronautics



1. Minimization of the RHC objective function of Eq. (22) using SQP with a three-step lookahead, and
control horizon Tc = 3 s. Abbreviated “Three step SQP”

2. Minimization of the RHC objective function of Eq. (22) using SQP with a long length planning horizon,
Th = 10 s, Tc = 2 s. Abbreviated “Long SQP”

3. Minimization of the RHC objective function of Eq. (22) using SQP with a short planning horizon,
Th = 5 s, Tc = 1 s. Abbreviated “Short SQP”

4. Minimization of the RHC objective function of Eq. (31) using a genetic algorithm with a three-step
lookahead, and control horizon Tc = 3 s. Abbreviated “Three step GA”

5. Minimization of the RHC objective function of Eq. (31) using GA with a long length planning horizon,
Th = 10 s, Tc = 2 s. Abbreviated “Long GA”

6. Minimization of the RHC objective function of Eq. (31) using SQP with a short planning horizon,
Th = 5 s, Tc = 1 s. Abbreviated “Short GA”

7. Minimization of path distance of Eq. (34) to the goal using an RRT based method and including only
obstacles which the simulated aircraft can reach within 5 seconds in each plan, Tc = 1 s. Abbreviated
“Short RRT”

8. Minimization of path distance of Eq. (34) to the goal using an RRT based method and including only
obstacles which the simulated aircraft can reach within 7.5 seconds in each plan, Tc = 2 s.. Abbreviated
“Med RRT”

The short horizon genetic algorithm was given a maximum of five seconds per plan or 50 generations
(whichever occurs first, provided the best discovered trajectory is feasible). The medium horizon genetic
algorithm planner was given a maximum of 10 seconds or 100 generations.

The short RRT based planner was allotted 20 seconds per plan to determine a feasible path to the goal
location, and the medium RRT based planner was allotted 30 seconds. A long horizon RRT based planner
was also attempted. However, because the RRT based method treats obstacle probability ellipses as hard
constraints, the large probability ellipses surrounding objects at the edge of its sensing horizon frequently
made it difficult or impossible to find a feasible trajectory. The SQP planner was able to overcome this issue
because it does not treat obstacles as hard constraints. Similarly, although the GA planner is designed to
allow a path passing within the probability ellipse surrounding an obstacle if it has not discovered a feasible
one in a reasonable amount of time.

Figure 5 depicts short and long planning horizons. In each figure, the blue line represents the traveled
path, and the red line is the planned path. Undiscovered obstacles are green circles, blue circles are the
actual positions of discovered obstacles, and black stars are their estimated positions. The planning horizon
length is shown by the region bordered in red, and the camera sensing range is given by the region bordered
in black. The goal center is a triangle with the surrounding goal region depicted by a red circle.

Figure 5a depicts a planned trajectory for a short horizon RHC planner, as used in the SQP and genetic
algorithm methods. This horizon extends to half the camera range for a straight trajectory from the current
aircraft location. Figure 5b depicts a long RHC planning horizon and planned trajectory characteristic of
the SQP and genetic algorithm methods. This horizon extends to the camera range for a straight trajectory
from the current aircraft location.
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Figure 5: Short and long planning horizons

B. Performance Metrics

Performance is assessed with regards to final path length from the start to goal location and back, closest
obstacle approaches, and percentage of path within rsafe of an obstacle.

The percentage of a path within rsafe of an obstacle depends both on estimator accuracy and aircraft
movement. It provides a measure of how well the chance constrained optimization problem of Equation 10
is met via the deterministic optimization of Problem 2. With a safety constraint parameter of ε = 0.00001,
the established safety constraint guarantees a probability of safety of

Psafe ≥ (1− ε)kfinalNo

where kfinal is the final discretized time step and No is the total number of obstacles. Although ε is small,
the magnitude of kfinal ·No is between 105 and 106, depending on total path length, so that the guaranteed
value of Psafe is nearly 0. To see that the formulated constraint actually provides a reasonable guarantee of
safety, it is assumed that the probability of colliding with an obstacle outside of the aircraft’s sensing range
is very close to zero. Because obstacles are uniformly distributed in the two dimensional world, the quantity
kfinal ·No may be effectively replaced by kfinal ·N ′o, where N ′o = No · Asense

Atotal
is the number of obstacles expected

to be within the aircraft’s sensing radius at a given time. This raises the effective safety guarantee to a
value near 0.65, again depending on trajectory length. The conservativeness built into the safety constraint
formulation further raises the actual probability of safety; the metric reporting the percentage of a path
within rsafe of an obstacle reflects this.

Next, computation performance is assessed with regards to number of replans per simulation second and
planning time per unit path length. A planning time assessment is not included for the RRT based planner;
this planner was written in the C programming language and called from Matlab; thus its planning time
cannot be directly compared with the other two methods. However, because the RRT based planner was
given a fixed amount of time to determine each required plan, this and the number of necessary replans
provide some measure of its computational performance.

In the following results, the top performers for each metric are shaded in light grey.

C. Aircraft Performance Results

Average path lengths for aircraft guidance performed with each planner are shown in Table 2. The return trip
segment includes the aircraft turn-around upon reaching the goal location so is expected to be longer than
the outbound segment. On average, the short horizon SQP planner resulted in the shortest path lengths for
both outbound and return legs. The long horizon genetic algorithm planner resulted in the longest average
outbound and return path segments, and was also least consistent, reflected in its large path length standard
deviation.
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Table 2: Aircraft Path Lengths for Each Planner

Aircraft Path Length: Avg. (St. Dev.) in meters
Outbound Leg Return Leg

Short GA 389.5 (34.8) 420.2 (37.6)
Long GA 719.3 (383.6) 780.6 (378.2)
3 Step GA 375.5 (5.1) 398.9 (9.8)
Short SQP 374.5 (4.3) 393.0 (10.2)
Long SQP 451.1 (51.4) 423.7 (34.9)
3 Step SQP 375.2 (4.4) 395.4 (6.7)
Short RRT 435.3 (38.1) 512.6 (69.8)
Med RRT 448.3 (65.5) 515.8 (91.9)

Next, Table 3 shows the closest obstacle approaches for each planner. For both outbound and return
legs, the long horizon genetic algorithm paths keep the largest minimum standoff distance. In contrast both
three step planners exhibited poor obstacle avoidance performance, with average closest obstacle approaches
well within rsafe.

Table 3: Closest Obstacle Approaches for Each Planner

Closest Obstacle Approach: Avg. (St. Dev.) in meters
Outbound Leg Return Leg

Short GA 4.2 (0.8) 4.7 (0.3)
Long GA 4.5 (1.2) 4.8 (1.0)
3 Step GA 2.4 (1.2) 3.6 (0.9)
Short SQP 3.9 (0.7) 4.5 (0.2)
Long SQP 4.2 (0.8) 4.2 (1.2)
3 Step SQP 2.7 (1.2) 3.4 (1.0)
Short RRT 4.3 (0.7) 4.4 (1.1)
Med RRT 4.4 (0.7) 4.2 (1.1)

Table 4 shows average percentages of traveled paths that come within rsafe of an obstacle. The three step
SQP planner resulted in the most close approaches in the outbound leg, and the three step genetic algorithm
resulted in the most close approaches in the return leg. The long horizon genetic algorithm and both RRT
planners tied for the fewest close approaches on the outbound leg. The short horizon genetic algorithm and
short horizon SQP planners produced paths which stayed outside of rsafe most on both outbound and return
legs.
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Table 4: Percent of Path Within rbarrier of an Obstacle for Each Planner

Percent of Path Within rbarrier Avg. (St. Dev.)
Outbound Leg Return Leg

Short GA 0.2 (0.3) % 0.0 (0.0) %
Long GA 0.1 (0.2) % 0.03 (0.1) %
3 Step GA 1.5 (1.0) % 0.4 (0.4) %
Short SQP 0.3 (0.4) % 0.0 (0.0) %
Long SQP 0.2 (0.3) % 0.2 (0.6) %
3 Step SQP 1.1 (0.9) % 0.5 (0.5) %
Short RRT 0.1 (0.3) % 0.1 (0.4) %
Med RRT 0.1 (0.2) % 0.2 (0.5) %

D. Computational Performance Results

Average replanning frequencies for each planner are shown in Table 5. Replans are triggered when the
end of the control horizon is reached, or when an updated obstacle position renders the current planned
trajectory unsafe. Obstacle position estimates are updated when new obstacles are discovered, or when
new measurements of known obstacles are taken. The “expected” column of Table 5 gives the replanning
frequency if replans only occured at the end of each control horizon. The final column in Table 5 shows how
much more often replanning occurs compared to the expected rate; this is expressed as a percentage of the
expected rate.

Higher percentages in the final column reflect frequent safety replans, i.e., replans because the current
planned trajectory is infeasible. In a sense, this indicates wasted planning effort, as it corresponds to plans
through portions of the environment which the UA knows little about.

The SQP planners and the short horizon RRT planner have the lowest average replanning frequency
relative to their expected rates. The long horizon genetic algorithm had the largest replanning frequency
relative to its expected rate.

Table 5: Number of Replans for Each Planner

Number of Replans Per Simulation Second: Avg. (St. Dev.)
Expected Avg (St. Dev.) % Above Expected

Short GA 1.0 1.5 (0.07) 50%
Long GA 0.5 0.8 (0.12) 60%
3 Step GA 0.3 0.4 (0.02) 33%
Short SQP 1.0 1.0 (0.01) 0%
Long SQP 0.5 0.5 (0.02) 0%
3 Step SQP 0.3 0.4 (0.02) 33%
Short RRT 1.0 1.0 (0.01) 0%
Med RRT 0.67 0.7 (0.02) 5%

Next, Table 6 shows the time spent planning for each meter of path length for the various planners. For
both outbound and return legs, the three step SQP planner spent the least amount of time planning per
meter. In both directions, the long horizon SQP planner spent the most time planning per meter. Note that
the genetic algorithm based planners are both allotted a certain amount of time for planning, whereas the
SQP planners continue until minimizing the supplied cost function.
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Table 6: Time Spent Planning Per Meter Path Length for Each Planner

Plan Time Per Meter Path Length in seconds per meter: Avg. (St. Dev.)
Outbound Leg Return Leg

Short GA 1.3 (3.1) 0.9 (2.7)
Long GA 1.4 (1.3) 0.9 (0.7)
3 Step GA 1.4 (36.8) 1.0 (3.1)
Short SQP 2.0 (14.2) 1.4 (3.8)
Long SQP 3.8 (26.5) 2.3 (20.3)
3 Step SQP 0.3 (3.2) 0.2 (0.9)

Figures 6 - 7 consolidate these metrics and show their distribution for each planner. In Figure 6, com-
putation time per meter path length is plotted against percent of time the aircraft spends within rsafe of
an obstacle. The yellow, green, and blue diamonds represent averages for the SQP based planners. The
red, blue, and magenta diamonds show averages for the genetic algorithm based planner. There does not
appear to be correlation between computation time and obstacle avoidance performance in either case. These
observations are further discussed in Section V.
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Figure 6: Computation Time per Meter Path Length vs. Percent of Time Within Barrier Radius of an
Obstacle: diamonds represent averages over all simulations, and x’s represent individual simulation results

Figure 7 depicts time spent planning per meter path length vs. total path length for each planner. The
three step and short horizon planners resulted in the least variation in these two metrics, and also the best
performance with regards to both. The long horizon SQP had relatively large variation in planning time,
and the genetic algorithm planner had large variations in path length.
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Figure 7: Computation Time per Meter Path Length vs. Total Path Length: diamonds represent averages
over all simulations, and x’s represent individual simulation results

V. Discussion

Obstacle avoidance performance

Obstacle avoidance performance is influenced by the coupling between three elements: the aircraft’s path
relative to obstacles, estimator performance, and the planner’s ability to produce paths which avoid obstacles.
Because obstacle positions are estimated using bearings only vision measurements, lateral movement relative
to obstacles results in more accurate estimates of their positions. Note that in nearly all planners, obstacle
avoidance improves on the return leg because obstacles are seen for a second time, so uncertainty in their
position estimates is further reduced. In all cases, obstacle avoidance performance exceeded the guarantees
of the established deterministic constraint discussed in section IV.B, reflecting the built in conservativeness
of this formulation.

Although the short horizon SQP planner resulted in the shortest average path lengths, its obstacle
avoidance performance was worse than other planners. On average, the short horizon SQP planner produced
paths which passed within rsafe of an obstacle at least once during the flight. Its tendency to create direct
paths toward the goal, and hence less lateral motion with respect to obstacles, may hurt its ability to produce
obstacle avoiding paths. Planner performance also contributes to the aircraft’s ability to avoid obstacles.
For the SQP planners, paths within rsafe are assigned a cost which ramps up quickly as distance to the
obstacle decreases. Paths within this barrier radius are not explicitly forbidden. These planners may allow
the aircraft to travel slightly inside the estimated obstacle barrier radius if it results in a more direct path
toward the goal.

Both three-step planners also performed poorly with respect to obstacle avoidance. The short-sightedness
of these planners caused them to produce paths which passed within rsafe of obstacles frequently. Further-
more, paths created by the three step lookahead planners also resulted in a collision (pass well within rsafe)
at least once during an average flight.

In contrast to the SQP planners, the genetic algorithm planner has a safety cost function designed to
explicitly avoid travel inside the established probability ellipse surrounding each obstacle’s estimated position
unless a feasible trajectory cannot be found within a reasonable amount of time. The fact that the genetic
algorithm planners resulted in paths which spent less time within rsafe of an obstacle than their SQP planner
counterparts suggests that the genetic algorithm and its safety cost function formulation may be better
suited for producing obstacle avoiding trajectories. The RRT planner is formulated to treat obstacles as
constraints; on average RRT generated paths also spent less time inside obstacle barrier radii and had larger
minimum obstacle standoff distances than SQP generated paths.

Long horizon planner path lengths and the impact of sampling strategy on performance

The long horizon SQP and the long horizon genetic algorithm planners both resulted in significantly higher
average path lengths than their short horizon counterparts, indicating frequent indirect paths taken toward
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the goal. Intuitively, performing a longer lookahead is expected to result in more direct paths and improved
obstacle avoidance, yet the short horizon genetic algorithm performed better than long horizon planners in
path length, and similarly in obstacle avoidance.

The long horizon genetic algorithm planner produced the largest average path lengths of all the planners.
This may be a combination of the fact that the genetic algorithm treats obstacles and their surrounding
probability ellipses as constraints, and the fact that the obstacles at the edge of its sensing radius have larger
associated uncertainty. Thus, the long horizon genetic algorithm favors highly circuitous paths which avoid
this uncertain region.

The long horizon SQP planner also produced relatively long paths toward the goal. Because the SQP
method follows a gradient to minimize the objective function of Eq. (22), and because the objective function
is highly non-convex due to randomly placed obstacles within a long planning horizon, optimizer initialization
has a significant impact on planner performance. By initializing the optimizer with a value that is not close
enough to the global minimum, the planner may instead return a control sequence which is a local optimum
of the provided cost function. Intuitively, the tendency to get stuck in local minima corresponds to difficulty
in “jumping over” obstacles, i.e., finding a lower cost trajectory on one side of an obstacle when initialized
by a control sequence on the other side of that obstacle.

Recall that the SQP planner is initialized by providing the minimum cost control sequence from a collec-
tion of 10 predetermined control sequences and 500 randomly generated control sequences, shown in Figure
2. The randomly generated trajectories are taken by a uniform random sampling of the input space; how-
ever, this does not equate to a uniform random sampling of the output space, i.e., aircraft trajectories in
two dimensional space. This bias is apparent in Figure 2b, and may result in inadequate SQP planner
initialization for longer horizon planners in which the objective function contains more local minima than
the shorter horizon counterparts.

Although the short horizon SQP initializer and genetic algorithm planner both use the same sampling
method as their longer horizon counterparts, there are fewer obstacles to avoid within their short lookahead.
Thus, the short horizon SQP planner is less likely to become stuck in a local minimum, as there are fewer
local minima in the short horizon cost function to begin with. Moreover, a trajectory which heads straight
for the goal, or mostly straight for the goal with relatively few turns to avoid obstacles, is more likely to
be feasible in a short horizon plan. In contrast, a long horizon plan will often involve frequent turning to
circumvent obstacles. This fact may allow the short horizon genetic algorithm planner to find more direct
paths toward the goal than the longer horizon genetic algorithm planner. Recall that a straight trajectory is
included in the genetic algorithm’s initial population at each planning step. Other short horizon trajectories
with only a few turns are not significantly different from this initial trajectory. If such a trajectory is safe,
the genetic algorithm is likely to find it since it is similar to a member of its initial population.

Unlike the genetic algorithm and SQP planners, the RRT based planner draws samples directly from the
output space, i.e., it samples waypoints in two dimensional space. It should then do a better job of exploring
the space of positions where the aircraft may travel. However, this RRT based planner also produced longer
paths toward the goal than the short horizon and three step planners. The waypoint follower used for this
study may enhance the tendency to produce indirect paths. In this method, there is no restriction on the
heading at which the aircraft arrives at each waypoint. Thus, the aircraft may arrive at a waypoint with
a heading that is significantly different from the heading toward to goal or the next waypoint. By using a
waypoint follower which enforces headings at waypoint arrival which are closer to the heading toward the
goal, the RRT based planner performance may be improved.

Overall performance

Overall, the short horizon genetic algorithm average path lengths and average time within obstacle safety
barriers was competitive with the best performing planners, while requiring the least computation time per
unit path length of those planners with acceptable obstacle avoidance. Thus, among these planners tested,
it is a good choice when computation time and resources are limited. The short horizon SQP planner also
produced short paths to the goal but is less desirable because of its poor obstacle avoidance performance.
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VI. Conclusion

This paper has presented results from implementation of three different path planners for guidance in
a cluttered environment with vision based SLAM. The three planners analyzed and compared are an SQP
based planner, a genetic algorithm planner, and an RRT based planner. Planning horizon lengths were
varied and compared for the SQP and genetic algorithm planners. The short horizon SQP planner produced
the shortest path lengths on average, but had poor obstacle avoidance performance. The long horizon
genetic algorithm planner resulted in the best average obstacle avoidance, but produced the longest paths
and required the second longest computation time. The short horizon genetic algorithm planner performed
well in all categories, with shorter average path lengths than other planners with comparably good obstacle
avoidance performance.

Extensions to this work will include further consideration of obstacle and aircraft position uncertainty
for path planning. This may be accomplished by adding an information cost to the objective function which
explicitly encourages the aircraft to move in a way that improves obstacle observability and thus obstacle
position estimates.
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