Coarse Resistance Tree Methods For Stochastic Stability Analysis

Holly Borowski, Jason R. Marden, David S. Leslie, and Eric W. Frew

Abstract— Emergent behavior in natural and manmade sys-
tems can often be characterized by the limiting distribution
of a class of Markov processes termed regular perturbed
processes. Resistance trees have gained popularity as a com-
putationally efficient way to characterize the support of the
limiting distribution; however, there are three main limitations
of this approach. First, it requires finding a minimum weight
spanning tree for each state in a potentially large state space.
Second, perturbations to transition probabilities must decay at
an exponentially smooth rate. Lastly, the approach is shown
to hold purely in the context of finite Markov chains. In
this paper we seek to address these limitations by developing
new tools for characterizing the limiting distribution. First,
we provide necessary conditions for stochastic stability via a
coarse, and less computationally intensive, state space analysis.
Next, we identify necessary conditions for stochastic stability
when smooth convergence requirements are relaxed. Finally,
we establish similar tools for stochastic stability analysis in
Markov chains over a continuous state space.

I. INTRODUCTION

Markov chains are used to model dynamical processes in
engineering and social sciences [4], [5], [10], [19], [20].
Emergent behavior of such systems can be characterized
by analyzing the stationary distributions of the governing
Markov chain. Providing a precise characterization of the
stationary distributions can be computationally prohibitive
when the state space is large. Furthermore, in situations
where the stationary distribution is not unique, characterizing
the impact of initial conditions can be challenging.

One approach for addressing these issues is to consider
small perturbations to the nominal process described above.
We introduce small perturbations to the nominal transitional
probabilities so that (i) the resulting perturbed Markov chain
has a unique stationary distribution and (ii) this perturbed
Markov chain will closely approximate the nominal Markov
chain when the size of the perturbations goes to zero.
As perturbations are driven to zero, the unique stationary
distribution associated with the perturbed Markov chain is
a stationary distribution of the nominal process. Significant
research has focused on deriving computationally effective
ways to characterize these limiting distributions, whose sup-
port is termed the stochastically stable states, for specific
perturbation models [6], [11], [12], [27].

Regular perturbed processes [12], [27] are a type of
perturbation model that is actively studied in both engi-
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neering and social sciences. They have been used in the
social sciences to model natural human tendencies, e.g.,
mistakes or experimentation [1], [3], [12]-[14], [21], [27].
In engineering systems, regular perturbed processes have
been used to prescribe distributed control laws that guarantee
desired equilibrium selection [2], [7], [9], [15], [17], [26],
[28], [29]. For example, [28] introduces a distributed learning
algorithm which is modeled as a regularly perturbed process
that guarantees convergence to a pure Nash equilibrium in
virtually any game where such an equilibrium exists.

The structure of the perturbations in regular perturbed
processes has been exploited to develop computationally ef-
ficient mechanisms for determining the stochastically stable
states. Building off the seminal work of [8], the authors in
[12], [27] demonstrate that the stochastically stable states in
any regular perturbed process can be characterized by finding
a minimum weight spanning tree rooted at each state in the
state space. These graph theoretic tools, termed resistance
trees, significantly reduce the computation associated with
characterizing the limiting behavior of perturbed Markov
chains when compared to traditional eigenvalue/eigenvector
methods. However, these methods are only effective in
characterizing the support of the limiting distribution.

Resistance tree methods have limitations. First, deter-
mining the minimum weight spanning trees over a large
state space can be computationally prohibitive. Many recent
developments in distributed learning introduce auxiliary state
variables to the individual agents as a coordinating mecha-
nism to drive the system to specific classes of equilibria [16],
[18], [23], [28], heightening the sensitivity to this limitation.
The addition of a single binary state variable to a single agent
doubles the size of the state space, which can enhance the
challenge in determining minimum weight spanning trees. A
second limitation of resistance tree methods is their depen-
dence on specific perturbation models. This dependence can
impose constraining assumptions on the prescribed system
dynamics, e.g., the assumptions of Theorem 4.3 in [15].
Lastly, existing research extending resistance tree methods
from the finite state space to continuous state space are often
highly specialized which limits their applicability to general
system analysis and design [22], [24]-[26].

This work seeks to address the limitations highlighted
above. In Section III, we derive sufficient conditions for
stochastic stability which entails a graph theoretic analysis
over a partitioned state space. Then, in Section IV we provide
a more general perturbations model and establish necessary
conditions for stochastic stability. In Section V we establish
similar results for Markov processes over a continuous state
space. We end with an illustrative example in Section VI.

II. PRELIMINARIES: RESISTANCE TREES FOR REGULAR
PERTURBED PROCESSES

Let P° be the transition matrix for a stationary Markov
chain defined over finite state space X, where, for x,y € X,



Pfy is the probability of transitioning in a single step from
state = to state y. Consider a family of processes over X
in which transitions occur with high probability according
to P and with low probability in some way that does not
follow P°. We model this family of perturbations to P° by
the stationary Markov chains with transition matrices {P°}
and transition probabilities { P, }, where € € (0,a], a > 0
parameterizes perturbations to the original process PV.

We focus on the class of regular perturbed processes
introduced in [27]. The Markov chain P°¢ is a regular
perturbed process (RPP) if:

(1) Pe is aperiodic and irreducible for all € € (0, a]

(2) lim, o+ P5, = PY,, Va,y € X

(3) If P;,, > 0 for some € € (0, al, then there exists r(x,y) >
0 such that
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where 7(x,y) is the resistance of the transition from x to y.

Because P° is aperiodic and irreducible, it has a unique
stationary distribution, p°. whereas P°, may have multiple
stationary distributions. For an RPP, lim,_, o+ p° = p° exists
and is unique, where ;° is a stationary distribution of P°
[27]. That is, P? selects the stationary distribution u® of P°
as € — 0. A state x € X is stochastically stable if it belongs
to the support of this distribution, i.e., u2 > 0 [6].

Full state space analysis: As in [27] we define a weighted
directed graph, G = (X, E). For z,y € X, (z,y) € E if
and only if P;, > 0 for all ¢ > 0. Edge (z,y) is weighted
by resistance r(x,y). A path in G from z to y is a sequence
of vertices Py, = (x = 0,1, 2%2,...,Lk = y), wWith no
repeated vertices and with (z;_1,2;) € E,Vj € {1,...,k}.
Irreducibility of P¢ guarantees that there is a path in G
between any two states in X; hence G is connected. A tree
T, = (X,Er,) is said to be an z-tree if it spans G and
there is a unique path in 7, from y to x, Vy € X,y # .
The resistance of T}, is
>

r(T:) = r(z,y). )
(z,y)€ET,

Let T, be the set of all z-trees. The quantity
= mi T, 3
7(z) = min r(T) 3)

is the stochastic potential of state z, and
p) >0 < y(x) <), Yy € X. )

That is, a state is stochastically stable if and only if has
minimum stochastic potential over all states in X [27].
Analysis over recurrent communication classes: The re-
current communication classes [27] of P¢ are the disjoint
subsets, Hq, Ho,..., Hy which are the recurrent classes of
the unperturbed process P°. To characterize the support of
the limiting stationary distribution, 1°, [27] builds a graph
over the recurrent classes of X. Determining the weight of
an edge from recurrent class H; to class H; requires finding
a lowest resistance path from H; to H;, i.e.,

r(Hi Hj) = min r(P), (5)
where P;_,; denotes the set of all paths originating in set H;
and ending in set H;, and r(P) is the sum of the resistances

of the edges in P. Computing such minimum resistance paths
is often difficult. The stochastic potential of a recurrent class
is the total resistance of the lowest resistance tree rooted at
that class. Young [27] proves that the stochastic potential of
a class equals the stochastic potential of the states it contains;
an analysis similar to (4) can be conducted to evaluate which
recurrent classes are stochastically stable.

III. COARSE ANALYSIS OF RPPS

Motivated by the first limitation highlighted above, we
perform a coarse analysis of RPPs to provide a more
computationally tractable method of determining stochastic
stability. We partition the state space and define resistances
between partitions in a way that leads to bounds on the
stochastic potential of states within each partition. We use
these bounds to establish sufficient conditions for a partition
to contain a stochastically stable state.

A. Notation and definitions

Let P° be an RPP over finite state space X, with graph
G = (X, E). We shift focus from identifying stochastically
stable states to identifying sets which contain them. A set
U C X is referred to as stochastically stable if 9z € U such
that lim, o+ p5 = p2 > 0.

A coarse representation of a partitioned space: Let X =
{X1,Xs,...,X;n} be a partitioning of state space X, and
let G = ({1,...,m},€) be a weighted directed graph over
the partition indices with (7, j) € £ if and only if there exist
z € X;, y € X such that (z,y) € E. Edge (i,5) € £ is
assigned weight

Tij ‘= ;IGHXVI{ r(xvy)a (6)

yeX;

the lowest resistance of any single step transition from X; to
X;. Minimizing over single step transitions is simpler than
minimizing over all paths between classes as in (5). Denote
a spanning tree of G rooted at j by 7, and refer to it as a
j-tree. Define the stochastic potential of partition X; as

Y(X;) = T)I(I:ienfj r(Tx; ), (7

where 7; denotes the set of spanning trees of G with root j.
A fine representation within partitionings: Let G|x, =
(X, E;) be the subgraph of G restricted to X;. The notation
T, x, refers to a minimum resistance spanning tree of G|x,
rooted at state x € X;. Define

U L :
7= max r(Ty x, 7= min r(T, x, 8
Pi zeX; ( $|X,) Pi rEX; ( w\Xl) ®)
to be the highest and lowest minimum resistance spanning
trees of G|x,, respectively. These quantities will be used to

construct minimum resistance trees over the full state space.
Notation summary:
Full state space analysis

e X - The full state space

G - A graph over X, edges defined by transitions in P
r(x,y) - Resistance of the transition from z to y

T,, an x-tree - A spanning tree of G rooted at z € X
r(T,) - Total resistance of all the edges in T},

Coarse state space analysis

o X ={X1,Xs,...

,Xm} - A partitioning of state space X



e G - A graph over the partitions in X’

e 1;; - Lowest single step resistance from X; to X;, edge
weight of (i,7) € G

o Tx,, a j-tree - A spanning tree of G rooted at partition j
Fine representation within partitionings

o G|x, - Graph G restricted to the set X;

o T, x, - Minimum resistance spanning tree of G|x, rooted
atz € X;

e pJ - Resistance of the minimum resistance tree T;(z),
maximized over z € X

e p& - Resistance of the minimum resistance tree T;(z),
minimized over z € X

B. Stochastic stability for arbitrary partitionings

We consider an arbitrary state space partitioning, requiring
only that each subgraph, G|x,, contains a path between each
pair of states in G|x;.

Theorem 1: Let P° be an RPP over state space X, and
let X = {X1,X5,...,X,,} partition X such that, for any
xz,y € X; and for all ¢ € (0,1) there exists a sequence
of positive probability transitions of P° beginning at  and
ending at y. Partition X is stochastically stable if

(X)) <AB(X), Vie{l,2,...,m} ©)
where
Vo (Xi) == v(Xs) + (IX| = m) min r(z,y)
z,yeX
min
PEP, o,

r(P)+ >y
z€X; J i#j
\{z;}

Proof: We bound the stochastic potential y(x;), z; €
Xj’ by

U — :
Yo (X5) = v(X;) + Inin

Yo (X5) < (x5) < 72(X;).

To establish the theorem, we apply (4) and the above lower
and upper bounds on a state’s stochastic potential.

Lower bounding the stochastic potential: To lower bound
v(z;), we determine the lowest possible resistance of an ;-
tree, Ty, = (X, Er,, ). For all i # j, each partition X; has at
least one edge of T, leaving it. Consider the graph G’ with
vertices {1,...,m} and an edge (i, k) if and only if there
exist € X;, y € X, with (z,y) € Er, , with resistance

(10)

min
(#,y) €Tz sit.
reX;,yeX;

r(z,y).

Tik =

Since there was a path in T, from each state in X to
x4, this graph must have a subtree rooted at j; denote
one such subtree by 7x,. Clearly v(X;) < r(7x;). The
resistance of each edge in T, not corresponding to an
edge in 7x, can be lower bounded by min, ,ex r(z,y).
There are |X| — m such edges in T}, ; hence v2(X;) =
¥(X;) + (| X] —m)ming yex r(z,y) lower bounds r(7;,)
for any x;-tree T}, and thus also lower bounds ~y(z;).
Upper bounding the stochastic potential: To upper bound
the stochastic potential of a state x;, we construct a spanning
tree T}, of G rooted at x; with resistance (T}, ) < 77 (z;).
Let 7y, = ({1,... ,m},ETXj) be a j-tree in G with
resistance y(X;). Begin with vertex set X and add edges
to construct T3, = (X, ETIj) as follows:
(1) For each (i, k) € ETXj, choose x € X; and y € X}, with

r(x,y) = ri, and add (z,y) to Er, . These states exist by
definition of G. This adds resistance y(X;) to T%;.
(2) For all i # j, add the edges of minimum resistance tree
Ty, 1x,» where z; € X; is the vertex with an outgoing edge
(z;,y) from the previous step. For each ¢ # j this adds
exactly one subtree with resistance at most p, adding at
most resistance Y, p; to Ty
(3) For each x € X;,  # z;, add the edges of
a minimum resistance path P,_., and eliminate any
redundant edges in 7,,. This adds at most resistance
2 wex\{z;} Minpep, ., 7(P).

We have constructed a tree over vertex set X rooted at Z;

with resistance at most

X i Y

XD+ DL pamin r(P)+) el
zeX;\{z;} J i#]

so, for all z; € X,

U . .
Y(ey) <7 (X)) = 7(X;) + min EZX , nin

TEX;

GPrn—>wj

r(P) + Z or.
i#j

1)

Completing the proof: The theorem follows by applying

(4) and the above bounds on a state’s stochastic potential.
]

\{z;}

C. Stochastic stability for minimal resistance partitionings

Often the structure of the problem considered results in
natural structure on the state space partitioning, allowing
us to establish useful sufficient conditions for stochastic
stability. We introduce the following definition:

Definition 1: A minimal resistance partitioning of state
space X is a partitioning X = {X1, Xo,..., X, } such that
forany i € {1,...,m} and for any x,y € X, z ¢ X, there
exists a path P,_, in G|x, with r(P,_,) < r(z, 2).

In a minimal resistance partitioning it is easier to transition
between states within the partition than to exit. We begin with
a lemma on their structure.

Lemma I: For any minimum resistance x;-tree in T, in
G, minimal resistance partitioning X', and X; € X, there
exists a tree T rooted at z; of equal resistance such that
in Tg’gj there is at most one edge leaving each X; for i # j
and no edge leaving X;.

The proof follows a tree manipulation argument and its
details are omitted for brevity.

Theorem 2: Given an RPP P*¢ over state space X and a

minimal resistance partitioning X = {Xy,..., X,,}, parti-
tion X is stochastically stable if
V(X)) <y (Xy), Vie{l,...,m} (12)
where
Y (Xi) = (X)) + Dok (X)) =X + o5+ D> pr
k=1 i#j

The stochastically stable state in a stochastically stable
partition X is given by z; = argmin,cx, r(T(x)).

Proof: Let P be an RPP over state space X and let
X ={Xy,..., X} be a minimal resistance partitioning of
X. We bound the stochastic potential of z; € X as

Y (X5) < v(w5) < 9m(X;). (13)
Applying Equations (13) and (4) establishes the theorem.



Lower bounding the stochastic potential: Let T,, =
(X, ETIJ-) be a spanning tree of G rooted at x; with
resistance y(z;), and let X = {X;,..., X,,} be a minimal
resistance partitioning of X. By Lemma 1, we may assume
that for all 7 # j, there is exactly one edge in T}, leaving
X;, and that there are no edges leaving X;. Given vertices
{1,...,m} construct a j-tree, Tx, by adding edge (i,k)
for i,k € {1,...,m} if an only if there exist x € X; and
y € Xy such that (z,y) € Er, . Clearly r(T%;) > v(Xj).
Since there is only one edge in T);; leaving any partition X,
the subgraph T, x, is a spanning tree of G| x, with resistance
greater than or equal to p-. Combining,

Yo =) Y pr ST+ ok < (zy).  (14)
i=1 i=1
Upper bounding the stochastic potential: Establishing the
upper bound

(i) <9 (X) + 05+ Yo =
i#]
follows a tree construction argument similar to the proof of
Theorem 1. Details are omitted for brevity.

Completing the proof: The first part of the theorem follows
directly from (4) and the above upper and lower bounds.
From step (3) in construction of 77, for upper bounding the
stochastic potential of x; € X, a state which satisfies

x; € argminr(T}) (15)

r€X;
for stochastically stable X is itself stochastically stable.
|

We now examine a third type of partitioning which allows
us to fully characterize the stochastically stable states.

Definition 2: A zero resistance partitioning is a partition-
ing X = {X1,...,X;,} of X such that, Vz,y € X;, i €
{1,...m} there exists a path P,_,, with 7(P,_,) = 0.
Corollary 1 follows immediately from the fact that pY =
pr =0, Vie {1,...,m} for a zero resistance partitioning.

Corollary 1: Given an RPP P* over state space X and a
zero resistance partitioning X = {X1,..., X},

Y(X;) =~(z;),  Vz; € X;,j€{l,...m}
A unique partition X; is stochastically stable if and only if

7(X;) < minvy(X;) (17)
i#]

(16)

IV. IRREGULAR PERTURBED PROCESSES

We now relax the requirement that P° must be an RPP
and establish necessary conditions for stochastic stability.

A. Resistance trees for irregular perturbed processes

Definition 3: An irregular perturbed process (IPP), P¢ of
PO over the finite state space X is a process parameterized
by e which satisfies the first two properties of an RPP from
Section II, along with the following:

(3) For all z,y € X such that Py, > 0 for some € > 0,
there exist positive CT(x,7), CY(x,y), r¥(z,y), rV(z,y)
such that

CU(z,y)e @) < PE < CV(a,y)e” @) (18)

for all ¢ > 0. Note, %(z,y) < rY(z,y); we call r&(z,y)
and 7V(x,y) the lower and upper resistance of transition
x — y respectively.

Recall that for an RPP Equation (1) holds so that P¢
satisfies (18) if we set TL%I:,y) = rY(x,9) = r(x,9)
and choose C¥(z,y) and CY(x,y) accordingly. Thus, this
property is a generalization of property (3) of an RPP.

For a tree T = (X, E7),
> @)

() = Z r(z,y) and rY(T):=
(:L’,y)EET (w,y)EET

Define lower and upper stochastic potentials of state x by

Ly o i oL Ul — min »U
v (z) = foin 7 (T) and ~"(x):= foin 7 (7).

B. Stochastic stability for irregular perturbed processes

The following theorem establishes necessary conditions
for stochastic stability in an IPP.

Theorem 3: Let P¢ be an IPP of P° over state space X,
and let p© be its unique stationary distribution. Define 73, =
mingex 7V (z). For any z € X,

V(@) > i = lim, g5 =0, (19)
i.e.,  is not stochastically stable.

Proof: Suppose P¢ is an IPP of P° over X. Choose
r € X with v¥(z) > 4% . From [27] and [8],

b; _
u;—z L, where pi= > [ P 0
zeX Pz TET, (y,2)eT
Then,
Y (@) =Y e (@) B
b =< 2 P @1

—~U. ’ €
£ Tmin EzeX bz

Since v*(z) > v, we know that lim, o+ e (@)= Tmin =,
Then it remains to show that E*VL(I)pg is bounded above,
and & mi > .cx p: is bounded below. These bounding
arguments follow similar techniques as the proof of Lemma
1 in [27] and are omitted for brevity. |

Corollary 2: Define X* := {z € X |y"(z) < Y.}

Then
. e
zsl—l>r(r)lJr Z Ha = 1
rzeX*

V. CONTINUOUS STATE SPACES

We now establish similar necessary conditions for stochas-
tic stability of a partition in a compact set. Let ® = {¢,}
be a Markov chain on compact set X and let P(x, A) be its
transition kernel, for A € B(X). The reader is referred to
[20] for the necessary preliminaries.

Lemma 2: A t-irreducible Markov chain ¢ on a compact
set X admits a unique stationary measure v.

Proof: Let ® be a -irreducible Markov chain on
compact set X. Applying Theorem 8.2.5 from [20], ® is
either recurrent or transient. Seeking a contradiction, suppose
® is transient. Then X is transient, so may be covered by a
countable number of uniformly transient sets. Because X is
compact, every cover has a finite subcover; thus, X may be
covered by a finite number of uniformly transient sets, which
is impossible. Therefore, & cannot be transient and must
be recurrent, by Theorem 8.2.5 in [20]. Applying Theorem,
10.0.1 in [20], & must have a unique stationary measure. H

(22)



A. Stochastic stability in continuous state spaces

As in Section III, we partition the continuous state space
X into disjoint sets {X;};c;, and bound the probabilities
of moving between the partitions. We begin with a simple

generalization of Lemma 3.2 of Chapter 6 of [8].

Lemma 3: Let P(x, X;) be the transition kernel for a -
irreducible Markov chain ® over a compact set X. Suppose
X is partitioned into disjoint sets {X; };er, with L finite and
¥(X;) > 0, Vi € L. Suppose also that for all i # j there

exist py;, p; > 0 such that the transition probabilities satisfy

pij < P(x, X;) < pyj, Vo € X (23)
Define GV = (L, &) such that (i,5) € &Y if and only if
p%j > 0, and assign weight p%j to edge (i, ). Let TF denote
the set of all spanning trees of G~ rooted at i, and define

Q=2 1l #i
TeTY (4,k)€ET

Define GY, TV and QY similarly with weights p% Then, if
v is the stationary distribution of the Markov chain @,

Qr QY

>jer @) >jer @5
Proof: ® is 1-irreducible, so there exists 7' € TL with

I xerr p?k > 0. Then, v(X;) > 0Vi. This guarantees
there exists 7' € T} with []; 1)cp, Pji > 0 since pj; <
p%, Vi, j. Consider a Markov chain over L with

1
Dij = TXz) /Xl v(dz)P(z, X;).

The stationary distribution, {y; }:cr, of this Markov chain is
{v(X;)}ier. Using weights p;;, define G, T and @; in the
same fashion as G&, T* and Qg‘ By condition (23),

<v(Xi) < (24)

(25)

P?j < pij Sp%a Vi, j
so it follows that
QF <Qi < QY
for all 7 € L and hence
L ) u
Qi . S QZ S Q’L -
ZjeL Qj ZjeL Qj ZjeL Qj

The result follows since, by Lemma 3.1 in Chapter 6 of [8],

Yorer, Lijrers Pik Qi

Zi’eL ZTeTi/ H(j,k)eET Pjk ZjeL Q;
]

We apply arguments of Section IV-B and Lemma 3 to
consider stochastic stability of elements of partitions of X.

Theorem 4: Let {P°} be the transition kernels for a
family of -irreducible Markov chains ®° over a compact
set X parameterized by ¢ € (0,a], @ > 0. Suppose X
is partitioned into disjoint sets {X;};cy, with L finite and
Y(X;) > 0, Vi € L. Suppose also that for all i # j there
exist CL(i, 5), (i, j), CY(4,5), 7V (i,7) > 0 such that the
transition kernels P°¢ satisfy

CY(i, j)e D) < P*(x, X;) < C& (i, j)e" (#9)

(26)

27)

IThe chain is +-irreducible and 1 (X;) > 0, Vi € L, so lower bounds

piﬂj can be chosen so that Vi € L, G contains a spanning tree with root 4.

Yz € X;,e € (0,a). Define the lower and upper poten-
tials, v“(X;) and yY(X;) as in Section IV, and define
Yo = minzeg iy yY(X;). Then, for any j € {1,...,1},
if VL(XJ') > Ymin»

lim v*(X;) =0,

e—0*t

(28)

where v° is the stationary distribution of ®°.
Proof: The proof is directly analogous to that of

Theorem 3: for each ¢ use p{fj = CU(i,j)erU(i’j), pin =
C* (i, j)fsrL(i’j), in Lemma 3; show that e~/ Q}J is bounded
above and £~ > QF below, so that v(X;) — 0. =

VI. ILLUSTRATIVE EXAMPLE

The following example illustrates use of the coarse state
space analysis of Section III. Suppose two collaborators,
Bob and Alice, each have the opportunity to purchase a
new computer on any given day, and may choose either a
PC or an Apple computer. The following factors influence
their decision: (i) collaboration is easier for both Bob and
Alice when they use the same type of computer, and (ii) PC
and Apple advertisements influence the value Bob and Alice
places on each type of computer.

This scenario can be represented by a game G, played
repeatedly over days ¢ = {0,1,2,...} and consisting of:

(i) Players N = {Bob, Alice}
(ii) Action sets A; = {Mac,PC}, i € N, with A = A; x A,
(iii) State space which reflects the ads seen by Bob and Alice:

x1 Bob and Alice both see Mac ads
To Bob sees a Mac ad, Alice sees a PC add
x3 Bob sees a PC ad, Alice sees a Mac add
x, Bob and Alice both see PC adds

(iv) Payoff functions, U; : A x X — R, i € N, shown in
Table I, which depend on the ad seen and the other player’s
computer choice.
(v) Action invariant, aperiodic, and irreducible state transi-
tion function, P,_,,» = 1/4, V& € X. Independent of their
current choices, Bob and Alice each see either a Mac or PC
ad with probability 1/2 each day. Seeing an ad increases the
payoff Bob or Alice associates with that type of computer.
Consider the mistakes model of [18], [23] in which players
make “mistakes,” i.e., suboptimal decisions, with a small
probability that exponentially decreases with the potential
payoff loss. We use this to model Bob and Alice’s decision
making processes as an RPP. Each day, one of the two is
chosen at random to purchase a new computer if desired.
With high probability, he or she matches the other’s current
choice, maximizing personal utility. With low probability, the
suboptimal choice is made. When player ¢ € {Bob, Alice}
purchases a new computer for day ¢ + 1, the decision
a;(t + 1) € {Mac,PC} is made probabilistically:

X =

AU; _g*
Prla;(t +1) = a;] = { iAUig ?; ZZ = Zé
where
ay := argmax U;(a;,a—i(t), z(t))
a;€{Mac,PC}
al := argmin Uj(a;,a_;(t), z(t))

a;€{Mac,PC}
AU; :=Ui(a}, a_i(t), z(t)) — Us(ag, a_i(t), 2(t))



Alice Alice
Mac PC Mac PC
Bob Mac [35TT0] o Mac mAN
PC [0 [27] PC [00 [ 247
Payoffs in state z Payoffs in state z2

Alice Alice
Mac PC Mac PC
Bop Mz [35 T00]  po Mac [33 [0
PC LT[ 47 PC [OT [ 34

Payoffs in state z3 Payoffs in state x4
TABLE I: Numbers on the left and right represent row and
column players payoffs respectively.

0
Mac, Mac Mac, PC

2
PC, Mac

0
(a) Partition graph, G

Mac, Mac<0— Mac, PC

PC, PC PC, Mac PC, PC

(b) Partition tree, 7

Fig. 1: Example graphs

Here z(t) € X and a_;(¢) are the advertising state and
the other player’s computer choice at time t, respectively.
The ensuing joint action is (a;(t+1),a—_;(t)), and the state
transitions with probability 1/4 to z:(t+1) € {x1,x2, x3, 24},
i.e., Bob and Alice each see either a Mac or Windows ad

the next day with probability 1/2.
Resistances between states are given by

max U;(aj,a_;,x)

* Al
ay G{a“ai

r([a’ ‘ﬂ? [(a;7 a*’i)’ x/]) =

(29)

r([a, ], [a,2']) = 0 (30)

for a € A, x,2’ € X. The equivalence relation
[a,z] ~[d/,z'] <= a=4d .

defines a zero resistance partition. We refer to a partition by
its action profile, a € A. The graph G, defined by following
the procedure of Section III-A and the minimum resistance
tree rooted at (Mac, Mac) are shown in Figure VI.

Here, v(Mac,Mac) = 2. No other partition is the root
of an equal or lower resistance spanning tree of G. Thus,
(Mac, Mac) is the only stochastically stable partition. Corol-
lary 1 implies that the only stochastically stable states are
[(Mac,Mac), z], x € X. Using Corollary 1 allowed us to
determine the stochastically stable states by computing trees
over four states instead of sixteen.” Also note that if players
only viewed PC adds, the unique stochastically stable state
would be (PC,PC).

VII. CONCLUSION

We developed tools for analyzing stochastic stability in
perturbed Markov chains. First, we showed that partitioning
the state space in a certain way can lead to sufficient
conditions for stochastic stability while alleviating the com-
putational burden of computing solving for minimal weight
spanning trees over the entire state space. Then, we gave

2Similar analysis can be used to reduce the necessary computation to
determine stochastic stability in state based games such as those in [15].

necessary conditions for stochastic stability of states in an
irregularly perturbed process. Finally, we established neces-
sary conditions for stochastic stability of sets in a Markov
chain over a continuous state space.
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